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ABSTRACT
Genetic improvement (GI) in Deep Neural Networks (DNNs) has
traditionally enhanced neural architecture and trained DNN pa-
rameters. Recently, GI has supported large language models by
optimizing DNN operator scheduling on accelerator clusters. How-
ever, with the rise of adversarial AI, particularly model extraction
attacks, there is an unexplored potential for GI in fortifying Ma-
chine Learning as a Service (MLaaS) models. We suggest a novel
application of GI — not to improve model performance, but to diver-
sify operator parallelism for the purpose of a moving target defense
against model extraction attacks. We discuss an application of GI
to create a DNN model defense strategy that uses probabilistic iso-
lation, o�ering unique bene�ts not present in current DNN defense
systems.
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1 INTRODUCTION
For complex tasks like text generation and image recognition, Deep
Neural Networks (DNNs) have become ubiquitous [1, 2]. Machine
Learning as a Service (MLaaS) has emerged as a popular business
model, whose value is broadly determined by themodel architecture
and dataset. Therefore, a signi�cant risk to MLaaS is the unautho-
rized disclosure of details from its training data or the DNN design,
including elements such as operators, weights, dimensions, and
con�guration. The repercussions of data breaches are tangible: they
can lead to breaches of privacy laws, ethical issues in handling
personal data, and the loss of a competitive edge in datasets. Simi-
larly, the rami�cations of model theft can be drastic. A stolen model
allows an entity to replicate the model with minimal research and
development investment. Moreover, access to the model accelerates
the discovery of other malicious applications like data poisoning,
model inversion, membership inference, and the creation of adver-
sarial examples. Attacks through model reversal or membership
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detection can reveal details about user training sets, infringing on
user privacy. Attacks using adversarial instances might compromise
the safety of autonomous vehicles, posing a signi�cant danger to
human life. Due to these hazards, model extraction attacks have
been identi�ed as a major concern by industry leaders, second only
to data poisoning, which is further facilitated by access to precise
model details [5]. From the perspective of national defense, the
theft of a DNN used for military applications might equate to the
loss of advanced weaponry technology.

Strong isolation through trusted execution environments (TEE)
and data oblivious algorithms are among the most popular defense
strategies for model extraction attacks from a systems perspective
[6, 9]. The bene�t of strong isolation is that it provides guarantees
on the isolation of memory from traditional vulnerabilities, with
the exception of side channel attacks. However, strong isolation
necessitates considerable performance overhead and restricts the
maximum feasible size of the model to �t in a TEE. Data oblivious al-
gorithms typically share the same downsides as strong isolation, as
they also use TEE, but add uniform treatment of data to avoid timing
side channels. Strong isolation and data oblivious algorithms both
have scalability limits, which is a challenge to secure all modern
large language models. Additionally, vulnerabilities to side-channel
attacks are relevant, despite their cost, considering the resources an
attacker would invest to extract a valuable artifact such as a model.

Figure 1: Proposed work�ow for a moving target defense
scheme. Given a cluster ofworker servers, and an initial inter-
operator parallelism schedule, we propose using a genetic
algorithm to �nd similar schedules in terms of performance,
but di�erent target schedules in regards to where speci�c
layers are in memory. Inference on a neural network is then
forwarded through the scheduled nodes. By introducing un-
certainty in where parameters are in memory, we posit that
an attacker needs more resources to extract the model.
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We propose modifying state-of-the-art automated inter-operator
parallelism techniques [4, 11] to provide a moving target defense
for DNN to defend against model extraction attacks. A moving
target defense scheme would provide probabilistic pseudo-isolation
to decrease the time value of information necessary to launch a
model extraction attack. By trading the strong privacy guarantees
of trusted execution environments or data-oblivious computation
for probabilistic pseudo-isolation, we can secure larger models with
fewer performance sacri�ces, and without any hardware modi�-
cation. In order to move the target e�ectively, we propose using
genetic algorithms so that we create schedules which maintain opti-
mal performance characteristics, but also provide isolation through
a multi-objective �tness function.

2 PROBABILISTIC ISOLATION
Assumptions:When a large DNN model is served for inference, it
is located on either a single server or potentially multiple servers
if a parallelism scheme is used. In this setup, the model weights’
location remains �xed for the duration of the service. If an attacker
learns any information about the model weights’ location in mem-
ory, they can repeat the successful approach until the entire model is
extracted. This has been shown towork throughmicro-architectural
vulnerabilities such as speculative execution [10], DRAM distur-
bance [7], and GPU timing side channels [3]. It is likely that more
vulnerabilities will surface in the future. However, these attacks
take considerable time, require research on speci�c hardware, and
often necessitate launching a prior attack to learn the architecture
of the model before extracting the weights.

Proposed Work�ow: If the speci�c location of the weights in
memory were moved across di�erent nodes in a cluster, an attacker
would need to duplicate their work. Suppose we have a pool of
< worker nodes, with each responsible for one forward pass of a
section of a neural network consisting of : layers. It can be shown
that in this formulation, there are
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ments of node to layer set mappings, forming a schedule. In an
average-case scenario, this implies a linear increase in the amount
of time required for an attacker to eventually retrieve every single
layer of a network if they have only compromised a single node. A
linear increase in the attacker’s workload is bene�cial because, in a
data center, thousands of nodes are used [8], leading to thousands of
possible schedules. This would result in an e�ort likely impossible
for an attacker to overcome within a timeframe before an intrusion
detection system discovers it. This forms a moving target defense,
where it is likely that information is isolated, called probabilistic
isolation, most popularly from address space layout randomization.

Moving Target Defense: We propose using a genetic algorithm
to solve a multi-objective optimization problem, balancing the sim-
ilarity between the current solution and a subsequent solution, and
a function that measures the respective solution’s performance. By
modeling the placement of DNN layers onto nodes as a bit ma-
trix, as shown in 2, and obtaining initial measurements of network
speeds for tensor transfers among servers, we can quickly evaluate
the �tness of a proposed solution. By solving this multi-objective
�tness function, a new solution that is similarly performant but
moves the target, would provide security bene�ts with little cost.
Moving the target in this manner could be triggered by existing

intrusion detection mechanisms, a �xed time duration, or manual
intervention from a human operator.
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Figure 2: Example schedule matrix for 5 nodes and 4 layers,
with rows and columns corresponding respectively. A 1 in
position i, j of the matrix indicates that layer j in the DNN
is scheduled on node i. A gray box represents the previous
schedule location.

3 CONCLUSION
Adversarial AI, speci�cally model extraction attacks, is a growing
concern. To account for the growing need to secure large-scale DNN
models, a low-overhead and scalable defense solution is necessary.
We suggest collaboration with the GI and security community to
investigate approaches to use probabilistic isolation and genetic
algorithms to provide security without the sacri�ces associated
with strong isolation and data-oblivious algorithms.
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