
CirFix: Automatically Repairing Defects in Hardware Design
Code

Hammad Ahmad
hammada@umich.edu

University of Michigan, Ann Arbor
Ann Arbor, Michigan, USA

Yu Huang
yhhy@umich.edu

University of Michigan, Ann Arbor
Ann Arbor, Michigan, USA

Westley Weimer
weimerw@umich.edu

University of Michigan, Ann Arbor
Ann Arbor, Michigan, USA

ABSTRACT

This paper presents CirFix, a framework for automatically repairing

defects in hardware designs implemented in languages like Verilog.

We propose a novel fault localization approach based on assign-

ments to wires and registers, and a fitness function tailored to the

hardware domain to bridge the gap between software-level auto-

mated program repair and hardware descriptions. We also present

a benchmark suite of 32 defect scenarios corresponding to a variety

of hardware projects. Overall, CirFix produces plausible repairs for

21/32 and correct repairs for 16/32 of the defect scenarios. This

repair rate is comparable to that of successful program repair ap-

proaches for software, indicating CirFix is effective at bringing over

the benefits of automated program repair to the hardware domain

for the first time.

CCS CONCEPTS

·Hardware→High-level and register-transfer level synthe-

sis; Bug fixing (hardware); · Software and its engineering→

Search-based software engineering.

KEYWORDS

automated program repair, hardware designs, HDL benchmark

ACM Reference Format:

Hammad Ahmad, Yu Huang, and Westley Weimer. 2022. CirFix: Auto-

matically Repairing Defects in Hardware Design Code. In Proceedings of

the 27th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS ’22), February 28 ś

March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3503222.3507763

1 INTRODUCTION

Recent increases in the complexity of hardware designs have chal-

lenged the ability of developers to find and repair defects in circuit

descriptions [68]. While significant effort has been devoted to effi-

ciently verifying functional correctness in hardware design descrip-

tions, relatively little work has been done in patching defects in such

descriptions automatically. By and large, debugging and repairing

hardware designs remains a very expensive and time-consuming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9205-1/22/02. . . $15.00
https://doi.org/10.1145/3503222.3507763

task [20]. Indeed, recent functional and security vulnerabilities due

to defects at the hardware design level have led to expensive conse-

quences [8, 43, 83]. To reduce the cost and improve the maintenance

of hardware designs, a solution needs to not only precisely identify

sources of defects in real-world off-the-shelf hardware descriptions,

but also automatically produce repairs implementing correct func-

tionality of the circuit designs that can then be shown to developers

for validation before moving on to the synthesis phase. Additionally,

we desire a solution that applies directly to both the behavioral as-

pects (i.e., higher-level descriptions of circuit functionality) and the

register-transfer level (RTL) aspects (i.e., lower-level descriptions)

of circuit designs, and makes use of readily-available resources that

are part of hardware design to validate proposed repairs.

Previous work has attempted to address this problem but may

not satisfy all of these characteristics of a desired solution. For

instance, some techniques automatically localize defects in design

source code but suffer from high false positive rates [29, 65]. Other

approaches for automatic error diagnosis and correction require

formal specifications to conduct design verification [12], which

usually do not scale to large designs. Furthermore, previous work

does not operate on behavioral-level descriptions of hardware cir-

cuits [13, 49]. On the other hand, in the realm of software, significant

research effort focuses on repairing bugs automatically [21, 46, 58].

Automated program repair (APR) algorithms fix defects in software

by producing patches that pass all test cases while retaining re-

quired functionality. Traditional APR for software employs fault

localization techniques to implicate faulty code, and such techniques

are often crucial to the success of program repair.

While both software programs and hardware description lan-

guages (HDLs) share programming concepts like expressions, state-

ments, and control structures, suggesting the possibility of repurpos-

ing software repair techniques to hardware designs, we highlight

two key differences between the two domains: (1) Software pro-

grams are typically based around a serial execution model, where

one line of code executes before the next. By contrast, HDL designs

are inherently parallel and often include non-sequential statements,

since separate portions of hardware can operate simultaneously.

(2) Software programs usually use test cases to evaluate functional

correctness, where individual test cases may pass or fail depending

on the quality of the software. HDL designs, on the other hand,

use testbenches [50], which are programs with documented and

repeatable sets of stimuli, to simulate behaviors of a device under

test (DUT). In both academia and industry, the majority of digital

hardware design is done using such HDLs.

We present two key insights to bridge the gap between well-

established software repair techniques and hardware designs. We

first hypothesize that while traditional spectrum-based fault local-

ization approaches do not apply to hardware designs that feature

990

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507763
https://doi.org/10.1145/3503222.3507763


ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Hammad Ahmad, Yu Huang, Westley Weimer

a more parallel structure [26], dataflow-based fault localization

(e.g., [5]) approaches work well in this domain. Second, we hypoth-

esize that a traditional hardware testbench can be instrumented to

admit observations for candidate patches that guide the search for

APR.

Leveraging these insights, we present CirFix, a framework for

automatically repairing defects in hardware designs implemented

in languages like Verilog, one of the most popular HDLs [34]. CirFix

uses genetic programming (GP), an iterative stochastic search tech-

nique, to find candidate repairs for defects in hardware designs.

CirFix also makes use of readily-available artifacts in the hardware

design process (e.g., testbenches, simulation environments) to di-

agnose and repair defects in a circuit description. We propose an

approach to guide the search for a repair by instrumenting hard-

ware testbenches to record the values of output wires at specified

time intervals during a simulation of the circuit design. CirFix then

performs a bit-level comparison of output wires against information

for expected behavior to assess functional correctness of candidate

repairs. CirFix employs a fixed point analysis of assignments made

to internal registers and output wires to implicate statements and

reduce the search space, enabling our approach to scale to large

circuit designs in industry.

We also present a benchmark suite of 32 defect scenarios [39]

based on three hardware experts Ð two from industry and one from

academia Ð asked to transplant bugs they observed in real life into

11 different Verilog projects. CirFix can produce plausible repairs for

21 out of the 32 Verilog defect scenarios within reasonable resource

bounds, of which 16 are deemed correct upon manual inspection.

The main contributions of this paper are:

• CirFix, a hardware-design automated repair algorithm.

• A novel dataflow-based fault localization approach for HDL

descriptions to implicate faulty design code.

• A novel approach to guide the search for a hardware design

repair that is compatible with the testbench-based hardware

testing process.

• A new benchmark suite of 32 scenarios, based on proprietary

bugs but available in 11 open Verilog projects.

• A systematic evaluation of CirFix on our benchmark suite.

CirFix was able to correctly repair 16 out of the 32 Verilog

defects under consideration.

2 MOTIVATING EXAMPLE

In this section, we use an example defect from a faulty 4-bit counter

with an overflow bit, implemented in Verilog, to motivate the fault

localization and candidate evaluation approaches used by CirFix.

The main block of the source code is shown in Figure 1a, with the

corresponding testbench in Figure 1b. The circuit design uses wires

enable and reset to increment (lines 35ś37) and reset (lines 30ś33)

the counter respectively. Incrementing the counter when it has a

binary value of 4’b1111 results in the overflow bit being set to

true (lines 39ś41). This implementation incorrectly manages the

overflow bit: the if-statement at line 30 ismissing an assignment that

resets overflow_out. Such defects can have serious consequences

Ð integer overflow errors can be leveraged into significant security

exploits [14].

(a) Main block of the 4-bit counter with an overflow error

(b) Main testing logic from the 4-bit counter testbench

Figure 1: A 4-bit counter with an overflow error in Verilog.

For the purposes of this work, there are two key hardware design

concepts that we highlight for a general audience: circuit synchro-

nization and parallelism.

Circuit synchronization. The main block of the circuit design code

shows an always block (line 27, Figure 1a) that executes repeatedly

until the simulation stops. The execution of such blocks can only

be triggered by changes to wires in the sensitivity list that follows

the always keyword. Nearly every digital circuit design includes a

clock signal (line 50, Figure 1b) that oscillates between a high and a

low state (denoted by events posedge and negedge respectively);

circuits rely on clock signals to know when and/or how to execute

their programmed actions. A clock cycle is the period of time it

takes for the clock signal to oscillate from high to low and back to a

high state. For the 4-bit counter in Figure 1a, the wire clk (denoting

the clock signal) is the only wire in the always block’s sensitivity

list (see line 27), and lines 28ś42 are executed every time that wire

reaches a high state.

Parallelism. A key property of HDL designs not immediately ap-

parent in Figure 1 is that parts of the design code typically execute in

parallel. When a design is realized into actual hardware, individual

components run all the time. Indeed, every statement in a Ver-

ilog design not inside an explicit sequential block of code exhibits

concurrency. For instance, for the 4-bit counter in Figure 1a, an

implementation managing the overflow bit correctly would include

two assignments to counter_out and overflow_out (on lines 31

991



CirFix: Automatically Repairing Defects in Hardware Design Code ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

and 32 respectively) that happen at the same time when reset is

true.

To automatically repair the design code in Figure 1a, CirFix needs

to first answer, for the original design and each candidate repair:

what part of the circuit, if any, is behaving incorrectly? Unfortunately,

standard spectrum-based fault localization tools commonly used

by APR for software do not work for HDL designs that exhibit

parallelism. To overcome this challenge, we propose a novel fault

localization approach based on assignments to wires and registers.

We first instrument the existing testbench to record output values

at given time intervals. This instrumented testbench, when used

to simulate the design, reports the output values from the circuit,

which can be compared against expected output. Any mismatch

between expected and actual output serves as the starting point for

our fault localization. For the 4-bit counter in Figure 1, the testbench

waits for 10 units of time before sending the reset signal (line 65,

Figure 1b Ð cf. stimuli for unit tests in software). The procedural

block within the testbench that was waiting on the reset signal (line

55, Figure 1b) then sets reset to true upon the next falling edge

of the clock signal. This causes any subsequent executions of the

corresponding if-statement that resets the wires (line 30, Figure 1a)

to evaluate the true branch, following which the counter is reset.

A correct design should also reset the overflow bit: at this point,

the expected output for the circuit requires overflow_out to be 0,

while the actual value recorded by our instrumented testbench is 𝑥

(the Verilog representation an uninitialized or unknown logic value).

This causes overflow_out to be implicated for fault localization,

and CirFix focuses repair efforts on assignments to this wire and

parts of design code that such assignments transitively depend on

(e.g., the conditional in line 39, Figure 1a).

For every candidate repair produced, CirFix needs to also an-

swer: how good (i.e., fit) is the proposed repair at fixing the defect?

Unfortunately, evaluation approaches for candidate repairs from

software cannot be applied to HDL descriptions that typically use

testbenches (see Figure 1b). We address this using a novel fitness

evaluation approach. Our instrumented testbench records the val-

ues of output wires and registers at every rising edge of the clock

during an otherwise standard hardware simulation. For developer-

specified time intervals from the design simulation (a clock cycle

by default), our fitness function compares each output bit against

the expected output: for every bit match, we add to the fitness

sum; for every bit mismatch, we subtract from the sum. This fitness

sum is then normalized. For the 4-bit counter shown in Figure 1,

the testbench simulates the design code for 26 clock cycles, out

of which the first 20 produce an output of 𝑥 (i.e., uninitialized)

for overflow_out on the original design. This causes an output

mismatch for overflow_out for 17 clock cycles, resulting in a fit-

ness score of 0.58 (see Section 3.2 for CirFix fitness calculations). A

repair managing overflow_out correctly would match expected

behavior, resulting in a fitness of 1.0.

This faulty circuit code was obtained by having a hardware

expert from industry adversarially transplant defects from their

experience into open circuit descriptions (see Section 4). We use

this example to motivate and demonstrate the basic design ideas

behind CirFix, an approach that scales well to larger circuit designs,

as we will demonstrate.

Algorithm 1 The high-level CirFix pseudocode.

Input: Circuit design to be repaired, 𝐶 .

Input: Instrumented testbench for circuit, TB.

Input: Expected output for circuit behavior, 𝑂 .

Input: Fitness function, 𝑓 .

Input: Parameters, popnSize,maxGens, rtThreshold, mutThreshold.

Output: Repaired circuit description.

1: popn← seed_popn(𝐶, popnSize)

2: repeat

3: childPopn← ∅

4: while |childPopn| ≤ popnSize and

∀ candidate ∈ childPopn. 𝑓 (candidate, TB,𝑂) < 1.0 do

5: parent ← tournament_selection(popn, 𝑓 )

6: fl_set ← fault_loc(parent)

7: if probability() ≤ rtThreshold then ⊲ Repair templates

8: child ← apply_fix_pattern(parent, fl_set)

9: childPopn← childPopn ∪ {child}

10: else ⊲ Repair operators

11: if probability() ≤ mutThreshold then

12: child ← mutate(parent, fl_set)

13: childPopn← childPopn ∪ {child}

14: else

15: parent2 ← tournament_selection(popn, 𝑓 )

16: {child1, child2} ← crossover(parent, parent2)

17: childPopn← childPopn ∪ {child1, child2}

18: until resources exhausted or

∃ candidate ∈ childPopn. 𝑓 (candidate, TB,𝑂) = 1.0

19: return minimize(candidate, TB,𝑂)

3 TECHNICAL APPROACH

In this section, we present CirFix, an automated repair algorithm

for defects in hardware design code. Our prototype implementation

of CirFix operates on hardware descriptions written in Verilog. The

pseudocode for the main CirFix loop is shown in Algorithm 1.

CirFix applies our two-pronged HDL-specific approach to im-

plicate faulty design code and assess the correctness of circuit

descriptions to produce repairs that can then be shown to human

developers for review. Our fault localization approach simulates

a faulty circuit and assigns blame to incorrect wire and register

outputs (line 6 in Algorithm 1; see Section 3.1). Note that while

traditional software-based APR techniques typically compute fault

localization once at the start of the search for repairs, we choose

to repeatedly re-localize to support multiple dependent edits made

to the source code. Our fitness function, tailored to the hardware

domain, assigns scores to each candidate patch to guide the search

for repairs (lines 4 and 18 in Algorithm 1; see Section 3.2).

At a high level, CirFix uses genetic programming (GP) [36], an

iterative stochastic search technique, to synthesize candidate re-

pairs to faulty HDL programs. The framework takes as input the

source code implementing a faulty circuit design, an instrumented

testbench used to simulate the circuit for testing and verification

purposes, the expected circuit behavior,1 and the input parameters.

The algorithm starts with the original source code and maintains a

1Note that CirFix does not require perfect information for expected behavior for
every timestep: the developer can choose to only provide information at certain time

992



ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Hammad Ahmad, Yu Huang, Westley Weimer

Algorithm 2 High-level algorithm for fault localization for HDL

based on a fixed point analysis of assignments.

Input: Faulty circuit design code AST, 𝑎𝑠𝑡 .

Input: Simulation output, 𝑆 : Time→ Var → {0, 1, 𝑥, 𝑧}.

Input: Expected output, 𝑂 : Time→ Var → {0, 1, 𝑥, 𝑧}.

Output: Fault localization set, 𝐹𝐿.

1: FL,mismatch← ∅, ∅

2: mismatch′ ← get_output_mismatch(𝑂, 𝑆) ⊲ Section 3.2

3: while mismatch ≠ mismatch′ do ⊲ Fixed point calculation

4: mismatch← mismatch ∪mismatch′

5: for node in ast do

6: if implicated(node,mismatch) then

7: FL← FL ∪ {node.id}

8: for each child of node do

9: FL← FL ∪ {child .id}

10: if type(child) = Identifier and

child .name ∉ mismatch then

11: mismatch′ ← mismatch′ ∪ {child .name}

12: return FL

population of program variants, each stored as a repair patch [2]

describing a sequence of abstract syntax tree (AST) edits parameter-

ized by unique node numbers. Each program variant is obtained by

applying a repair operator (lines 12 and 16 in Algorithm 1; see Sec-

tion 3.4) or a repair template (line 8 in Algorithm 1; see Section 3.3)

to a parent selected for reproduction. Candidate variants are se-

lected for reproduction based on their fitness scores assigned by

the CirFix fitness function (line 5 in Algorithm 1; see Section 3.5).

Our fix localization identifies code to be inserted or replaced as

part of mutation operations (see Section 3.6). The algorithm loops

for several generations, each maintaining a population of program

variants, until a plausible repair is found that produces output (as

observed by the instrumented testbench) matching the expected cir-

cuit output, or allowed resources are exhausted (i.e., the algorithm

reaches a timeout or a certain number of generations). For the final

post processing step, CirFix minimizes [87] a candidate repair to

remove extraneous operations not needed to obtain correct circuit

output (line 19 in Algorithm 1; see Section 3.7). Candidate repairs

are not deployed directly but are instead shown to human develop-

ers (e.g., during the pair process between an RTL design engineer

and a verification engineer [10]) for validation before the design is

ultimately synthesized, reducing maintenance costs [48, 84].

3.1 Fault Localization

Fault localization is critical to the success and efficiency of APR [40].

Traditional APR for software often relies on spectrum-based fault

localization [31] to narrow down defects to certain parts of a faulty

program by sampling the program counter. Such fault localization

approaches do not extend naturally to the parallel structure of

hardware descriptions [26].

To overcome this challenge, we propose a novel dataflow-based

fault localization approach to implicate faulty code in HDL descrip-

tions. Previous work analyzing defects in large hardware projects

intervals. See Section 5.4 for an evaluation of the trade-off between the level of detail
of expected output and repair success.

reports that most defects in Verilog descriptions correspond to

assignment statements and if-statements [75]. We present an algo-

rithm that implements an analysis of assignments made to wires

and registers in a circuit’s design code to implicate faulty statements.

Our proposed algorithm transitively captures data and control de-

pendencies in a context-insensitive fixed point analysis. While tra-

ditional spectrum-based fault localization approaches for software

return a ranked list of implicated statements [1, 30, 60], our ap-

proach returns a uniformly-ranked set: due to the parallel structure

of HDL designs, a set of implicated assignments that are equally

likely to contribute to the design defect suffices.

Algorithm 2 outlines the high-level pseudocode for our fault

localization approach. The algorithm takes as input the AST of the

faulty circuit design, the output from design simulation, and the

expected circuit behavior (see Section 3.2 for the structure of the

simulated and expected outputs). It then compares the simulation

output against the expected behavior to produce a set of identifier

names (i.e., variable names) for output wires and registers with

mismatched values. Using this mismatch set as a starting point,

for every node in the AST, the algorithm checks if the node is

implicated by output mismatch. Implication for a node in the AST

occurs when

• (Impl-Data): either the node corresponds to an assignment

statement and the left child of the node corresponds to an

identifier in the mismatch set (cf. data dependency analysis),

• (Impl-Ctrl): or the node corresponds to a conditional state-

ment and an identifier in the conditional statement belongs

to the mismatch set (cf. control dependency analysis).

Any implicated node and all of the node’s children are added to

the fault localization set. Additionally, if any child of an impli-

cated node is itself an identifier not part of the mismatch set, the

name of the identifier is added to the mismatch set (Add-Child).

For example, for the 4-bit counter introduced in Section 2, recall

that the overflow_out wire had incorrect output from the circuit

simulation. This causes the wire to be added to the mismatch set.

The CirFix fault localization implicates the only assignment to

overflow_out (line 40, Figure 1a) by rule (Impl-Data) in the first

iteration of the algorithm. Indeed, the entire if-statement wrapping

this assignment (line 39, Figure 1a) gets implicated by (Impl-Ctrl),

which brings in the new identifier counter_out to the mismatch

set by (Add-Child). The process is repeated until there are no new

identifiers added to the mismatch set, following which the fault

localization set is output.

This novel approach to fault localization for hardware is a good

fit for automatically repairing HDL designs: it returns a precise

set of implicated AST nodes in a faulty circuit design, is context-

insensitive and therefore inexpensive to compute, and applies di-

rectly to node types associated with ASTs for languages like Verilog.

3.2 Fitness Evaluation

The fitness function evaluates the acceptability of a program variant

by assigning a value ranging continuously between 0 and 1 to the

variant, with 1 indicating a plausible [64] (i.e., testbench-adequate)

repair ready to be shown to human developers. Fitness provides a

termination criterion for CirFix and guides the search for a repair.

As mention in Section 1, traditional APR for software uses test-case

993



CirFix: Automatically Repairing Defects in Hardware Design Code ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Figure 2: A comparison between the simulation result and

the expected behavior information for the faulty 4-bit

counter in the motivating example. Wires with the correct

output are omitted for space reasons. Note the output mis-

match for the overflow_outwire for timestamps 35 through

195.

based evaluation strategies to assess candidate repairs. Hardware

designs, by contrast, use testbenches to verify functional correct-

ness. We present a novel fitness function tailored to hardware to

guide the search for repairs to HDL designs. Our fitness function

uses two key insights: visibility and comparison.

Traditional hardware testbenches monitor the values of output

wires during simulation and assess correctness based on the final

output values. For instance, the testbench for the 4-bit counter in-

troduced earlier (Figure 1b) may report that the final value of the

counter is 5 and the overflow bit is 1 when the simulation termi-

nates. Some off-the-shelf hardware testbenches, especially those

for large projects, may not even report the exact incorrect value,

reporting instead merely the presence or absence of an error dur-

ing simulation. We want our fitness function to assess a candidate

repair based on intermediary as well as final output values, and

assign fitness values to the repair based on its overall closeness

to the correct circuit design [32]. To do so, given a testbench for

a faulty HDL description, we instrument the testbench to record

the values of output wires and registers for specified time inter-

vals. This instrumentation is easily automatable: every hardware

testbench must instantiate a device-under-test (DUT) and connect

wires to the module being instantiated (cf. unit tests in software

instantiating the object being tested); each module in turn specifies

input and output wires, and a static analysis of the instantiation

of the DUT can provide the information needed to instrument a

testbench automatically.

Once the testbench is instrumented, we simulate the circuit de-

sign and compare the results against the expected output to assess

functional correctness of the HDL description. We desire a fitness

function that assigns high values to candidate repairs that display

behavior similar to expected behavior. To do so, we need to deter-

mine the relative contribution of each bit to the fitness of a proposed

repair. Given a set of time steps 𝑇𝑖𝑚𝑒 , a set of output wires and

registers 𝑉𝑎𝑟 , a simulation result 𝑆 : Time → Var → {0, 1, 𝑥, 𝑧},

and expected output 𝑂 : Time → Var → {0, 1, 𝑥, 𝑧}, where 𝑥 or 𝑧

correspond to unknown logic value and high impedance respec-

tively, for timestamp 𝑐𝑖 ∈ Time, we sum over the 𝑛 = |𝑆 (𝑐𝑖 ) | output

bits of the circuit. We compare the expected value for wire 𝑏 from

clock cycle 𝑐𝑖 , 𝑂𝑐𝑖 ,𝑏
= 𝑂 (𝑐𝑖 (𝑏)), against the actual value from the

simulation result, 𝑆𝑐𝑖 ,𝑏 = 𝑆 (𝑐𝑖 (𝑏)) (see Figure 2 for an indicative

example juxtaposing a simulation result with expected behavior).

If the bits match, we add to the fitness sum of the circuit; if the bits

differ, we subtract from the fitness. An additional penalty weight

𝜑 is assigned to bits with values of 𝑥 (uninitialized) or 𝑧 (high

impedance).

The fitness sum, 𝑠𝑢𝑚(𝑆,𝑂), and total possible fitness, 𝑡𝑜𝑡𝑎𝑙 (𝑆,𝑂),

are defined as follows, where _ represents a bit value of 0 or 1:

For the example shown in Figure 2, the mismatch 𝑥 = 𝑆35,𝑣 ≠

𝑂35,𝑣 = 0 subtracts 𝜑 from the fitness sum, whereas the match

𝑆205,𝑣 = 1 = 𝑂205,𝑣 adds 1 to the fitness sum, with 𝑣 = overflow_out.

The normalized fitness of the circuit is then defined as:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑆,𝑂) =

{

0 𝑠𝑢𝑚(𝑆,𝑂) < 0
𝑠𝑢𝑚 (𝑆,𝑂)
𝑡𝑜𝑡𝑎𝑙 (𝑆,𝑂)

𝑠𝑢𝑚(𝑆,𝑂) ≥ 0

This novel approach to calculating normalized fitness is effective

at capturing whether or not a candidate design is close to the correct

implementation of the circuit, and at guiding the search for a repair.

3.3 Repair Templates

A repair template for a defect in code is defined as a pre-identified

pattern that can be applied to some aspect of the code to fix the

defect. The idea of using templates for APR is well-studied for soft-

ware [35, 44, 45]. We apply repair templates to aid CirFix in its

search for repairs. We propose nine repair templates correspond-

ing to four defect categories for HDL designs. Of the four defect

categories we consider, three are suggested in previous work by Su-

dakrishnan et al. [75] that analyzes the bug fix history of four hard-

ware projects written in Verilog and presents several commonly-

occurring fixes for HDL descriptions; we propose the remaining

defect category based on our experience with defects in hardware

designs.

The repair templates in CirFix are presented in Table 1. Incor-

rect conditionals, sensitivity lists, and assignments correspond to

the three most commonly occurring defects in the four hardware

projects analyzed in previous work [75, Tab. 2]. Note that our repair

templates focus on correct behavior from circuit designs during

simulation (cf. rules targeting synthesizability [76]). For an incor-

rect conditional for a program branch (e.g., the condition for a

while-loop or an if-statement), our repair templates can negate

the conditional. For an incorrect sensitivity list, recall that in HDL

descriptions, a developer can specify blocks of code to execute infin-

itely often (e.g., line 27, Figure 1a); the execution of such blocks can

only be triggered by events described in the block’s sensitivity list.

Our repair templates for this defect category can modify a block’s

sensitivity list to change when the block is executed. HDL designs

also allow the use of blocking and non-blocking statements for

994



ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Hammad Ahmad, Yu Huang, Westley Weimer

Table 1: Repair templates in CirFix

Defect Category Pattern Description

Conditionals Negate the conditional of a code block (e.g.,

if-statement, while-loop)

Sensitivity Lists Trigger an always block on a signal’s falling

edge

Trigger an always block on a signal’s rising

edge

Trigger an always block on any change to a

variable within the block

Trigger an always block when a signal is level

Assignments Change a blocking assignment to non-

blocking

Change a non-blocking assignment to block-

ing

Numeric Increment the value of an identifier by 1

Decrement the value of an identifier by 1

assignments. A blocking assignment statement (written =) must be

executed before any subsequent sequential statements. By contrast,

a non-blocking assignment (written <=) allows assignments to be

made without delaying the procedural flow of a block. Our repair

templates for incorrect assignments can change assignments from

blocking to non-blocking, and vice versa. Finally, for numeric er-

rors, our repair templates can increment or decrement the values

of declared identifiers.

3.4 Repair Operators

CirFix uses two standard repair operators from well-known soft-

ware repair approaches [39, 47, 63], mutation and crossover, to

search the nearby space of circuit designs to produce a repair and

to avoid local optima during the process. The input parameter

𝑚𝑢𝑡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (line 11, Algorithm 1) tunes the relative application

of mutation and crossover.

As in common software APR approaches (e.g., [39, Sec. III-F]),

the mutation operator itself can be characterized into three sub-

types: replace, insert, and delete. The mutate function of the CirFix

framework generates a random probability value and employs the

user-provided replace, insert, and delete thresholds to choose a

mutation sub-type. The replace operator picks a random node from

the fault localization space and replaces the node with another

randomly chosen node from the corresponding fix localization (see

Section 3.6) space. The insert operator picks a random node from the

fix localization space and inserts it after another randomly picked

node within a code block. The delete operator picks a random node

from the fault localization and replaces it with an empty node Ð

this operation is equivalent to deleting certain statements from the

program variant under consideration.

CirFix uses the standard single-point crossover [62], which starts

by picking a crossover point for each of the two parents. Edit opera-

tions to the right of that point are swapped between the two parents.

This results in two children program variants, each carrying some

information from both parents. The crossover operator plays a

key role in avoiding local optima when searching for high-fitness

patches.

3.5 Selection

Automated program repair techniques based on GP use selection to

choose parent variants from a population based on fitness. Tourna-

ment selection [56], a selection approach that selects a random pool

of 𝑡 program variants in a population and selects the fittest member

of this pool as the parent, has been used widely for software-based

APR [39, 42, 63, 81]. CirFix uses tournament selection to select a

parent variant to transfer genetic information to the next genera-

tion as a child variant. The top 𝑒% fittest program variants from the

previous generation are automatically chosen to be included in the

next generation in a process known as elitism [19, 82].

3.6 Fix Localization

Given that fault localization has identified faulty design code to be

changed, our fix localization provides some guidelines on how to

perform the changes. While early works on APR for software chose

a node at random for insertion and replacement operations [85],

such approaches caused a substantial fraction of mutants to not

compile [86]. We use fix localization to restrict the scope of the

insert and replace operators to reduce the number of syntactically

invalid mutants.

For the insert operator, we propose to only use statements types

(e.g., conditional statements, assignments, etc. Ð see Annex A.6.4

in the IEEE Standard for Verilog [27] for the full BNF definition

of statement types) as the sources for insertion code. We further

allow such statements to be inserted only into initial or always

blocks, since such statements inserted elsewhere violate the syntax

of Verilog [27, Annex A.6.2]. For the replace operator, we design

CirFix such that an item in a Verilog module [27, Annex A.1.4] can

be replaced either by another item of the same type, or by an item

sharing the same immediate parent type (as specified in the formal

syntax definition of Verilog [27, Annex A]).

We observe that our fix localization approach reduces the aver-

age number of mutants producing compilation errors in our proto-

type from 35% to 10%. This reduction is comparable to that of fix

localization techniques in software (e.g., [39]).

3.7 Repair Minimization

During the search for a repair, CirFix might produce edits to the

code that do not contribute to the repair (e.g., repeated assignment

statements within an always block). Such edits do not increase the

fitness of the candidate repair, but they could introduce inefficien-

cies in the final circuit design or affect the design’s readability [66].

CirFix removes such extraneous edits in a postprocessing min-

imization step by finding a subset of the edits in a repair patch

from which no further elements can be dropped without causing a

reduction in the fitness of the patch. As in APR for software (e.g.,

[39]), we use the delta debugging algorithm [87] to efficiently (i.e.,

in polynomial time) compute this one-minimal subset of the repair

patch. The minimized set of repairs is then converted back into

HDL code implementing the hardware design correctly.

4 EXPERIMENTAL SETUP

This section describes the experimental setup for our evaluation of

CirFix, including the construction of our new benchmark suite and

our choice of experimental parameters.

995



CirFix: Automatically Repairing Defects in Hardware Design Code ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Table 2: Benchmark hardware projects in our experiments.

Project and testbench sizes are measured by source lines of

code as reported by the Unix wc command.

Project Description Project Testbench

LOC LOC

decoder_3_to_8 3-to-8 decoder 25 56

counter 4-bit counter with overflow 56 135

flip_flop T-flip flop 16 39

fsm_full Finite state machine 115 66

lshift_reg 8-bit left shift register 30 44

mux_4_1 4-to-1 multiplexer 19 51

i2c Two-wire, bidirectional serial

bus for data exchange between

devices

2018 482

sha3 Cryptographic hash function 499 824

tate_pairing Core for the Tate bilinear pair-

ing algorithm for elliptic curves

2206 983

reed_solomon_ de-

coder

Core for Reed-Solomon error

correction

4366 148

sdram_controller Synchronous DRAM memory

controller

420 95

Total 9770 2923

For our prototype implementation of CirFix, we use the open-

source PyVerilog toolkit [79] (version 1.2.1, modified to support

numbering for each node type) to parse a Verilog description of a

circuit and produce an AST representing the circuit design code.

We use Synopsys VCS [78], the primary hardware verification tool

used by a majority of the world’s top-twenty semi-conductor com-

panies [77], to simulate the code using a manually instrumented

testbench to assess functional correctness of the circuit design.

Our prototype for CirFix is implemented using Python 3.6.8 and is

made publicly available on GitHub (https://github.com/hammad-

a/verilog_repair).

4.1 Benchmark Suite for Hardware Defects

For our evaluation of CirFix, we desire a benchmark suite consisting

of faulty hardware designs that are indicative of defects in industry,

comprise a wide range in terms of project size, and correspond to

a variety of components found in real-world designs. To the best

of our knowledge, there are no publicly available benchmarks that

satisfy our requirements. Additionally, there is limited open source

community support for industrial hardware designs, since such

designs are often considered Intellectual Property (IP) of the stake-

holder companies. As such, we propose to adapt the defect-seeding

approach common in software [17, 61, 69] and present a bench-

mark suite of defects scenarios [39, 40] Ð each consisting of a circuit

design, an instrumented testbench for the design, information for

correct circuit behavior, and an expert-transplanted defect from

real-life experience Ð to be used for the evaluation of automated

repair techniques for hardware.

4.1.1 Selecting Hardware Projects. Every defect scenario includes

a base circuit design and a testbench, as introduced in Section 2

(Figure 1). We required circuit designs with an available testbench

and that admit simulation using the Synopsys VCS tool without any

changes to the design code. This is a common requirement com-

parable to the benchmarks suites for APR in software [39, Sec. IV-

A] [33, Sec. 3.1]. The hardware projects for our benchmark suite are

presented in Table 2. For each hardware project, we need an instru-

mented testbench to record output values for our fitness function.

While the instrumentation process is automatable (see Section 3.2),

we manually instrument the testbenches for our prototype. Each

testbench instrumentation required under 10 lines of Verilog code,

took at most 5 minutes of developer time, and did not require any

circuit-specific knowledge besides the information already available

in the testbench (i.e., identifier names of output wires and registers,

and the clock cycle duration).

We choose six projects from undergraduate VLSI courses to be

indicative of repairing a small component in hardware design. We

augment this by choosing the remaining five projects from Open-

Cores (a popular website for open-source HDL designs) and GitHub

collectively to be indicative of repairing the entirety of a large circuit

design. Unlike some previous works that only use toy benchmarks

for evaluation (e.g., [12, 74]), our benchmarks include a range of

project sizes (in terms of source lines of code), and all projects Ð

including those from courses taught at the undergraduate level Ð

correspond to components found in real-world hardware designs.

To satisfy our variety requirement, we include a project from each

of the key cores listed on the OpenCores website for OpenCores

certified projects (i.e., arithmetic, communication, crypto, error

correction, and memory).

4.1.2 Obtaining Information for Correct Circuit Behavior. CirFix

requires information about expected behavior for a circuit design

to assign fitness values to candidate repairs. In APR for software,

guidelines for correct behavior often take the form of passing and

failing test cases [46]. More generally, however, such information

can be induced from a previous version of the design known to be

functional [4, 18, 22, 51, 53, 71] or a combination of data mining and

static analyses of the design [15, 23, 25, 72], or manually provided

by the human developer [3, 11, 24, 28].

This so-called łoracle problemž [9] remains a challenging issue

in general for hardware testing and automated repair: implicit, high-

level test oracles (e.g., łthe program does not divide by zerož) used

by APR tools for software do not typically carry over to hardware.

Given that circuit designs exhibit parallelism and require synchro-

nization against a clock signal [70], how a circuit design reaches a

certain output is often equally important as the actual final output

produced. As such, any hardware test oracles need detailed infor-

mation about the intermediate values from design simulation, and

it does not suffice to only use the output values from the simulation

as correctness information for an approach like CirFix.

For our benchmark suite, we follow an established approach

in APR for software [21, 41] and employ a previously-functioning

version of the circuit design to record the expected behavior in-

formation for circuits in our benchmark suite. We acknowledge

that such a previously-functioning version might not always be

available, or the circuit specification may have changed. In that

case, a developer can use a partially correct or most up-to-date

version of the circuit as a starting point, and manually annotate the

missing or incorrect bits based on knowledge of the circuit design.

This process is analogous to test suite evolution in software [6]. Ul-

timately, however, if manual developer effort and previous designs

are both unavailable, CirFix cannot be applied to repair defects in

a circuit.

996

https://github.com/hammad-a/verilog_repair
https://github.com/hammad-a/verilog_repair


ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Hammad Ahmad, Yu Huang, Westley Weimer

While we recognize that the process of manually annotating

the correctness information may take longer than manually fixing

a single defect, this information is a one-time cost as long as the

high-level circuit specification (i.e., I/Owires and registers, expected

behavior) does not change. Given the number of bugs that may arise

during the development and maintenance of a circuit design, we

believe that it would still be more cost effective to invest developer

effort in the correctness information, which can then be used by

CirFix during inexpensive machine idle time (see discussion in

Section 5.1).

4.1.3 Transplanting Hardware Defects. Since actual industrial de-

fects are not made publicly available, we propose an approach

based on defect transplantation by experts. Previous works have

used either randomly-seeded or self-seeded defects for evaluation,

potentially admitting bias (e.g., [13]). To combat this, we recruited

three hardware experts Ð two of whom work in industry and one

who works in academia, with 19 years of experience with hardware

design collectively Ð to transplant (proprietary or non-public) de-

fects from their real-world experience into otherwise-correct open

source implementations of the hardware projects in our benchmark

suite. We desire defects in our benchmark suite corresponding to

a variety of complexities, both in terms of finding and fixing the

defect. As such, we define two defect categories for this process:

• Category 1:ACategory 1 (i.e., łeasyž) defect denotes mistakes

pertaining to simpler, higher-level aspects of circuit design.

• Category 2: A Category 2 (i.e., łhardž) defect denotes more

intricate errors that usually require more effort to diagnose,

understand, and/or fix.

To get the benefits of real-world defects in our benchmark suite,

we instructed our recruited experts to transplant and categorize

real defects they have previously encountered to the open-source

circuits in our benchmark. We also asked our experts for ł... variety

in how the defects appear and would be fixed, as long as that variety

aligns with how often [they] observe these bugs or mistakes in real

lifež. We further required that any transplanted defects should com-

pile successfully and change the externally visible behavior of the

circuit with respect to the instrumented testbench, and correspond

to approximately the same level of complexity as that of real-world

defects.

Table 3 lists the transplanted defects from our experts that met

these criteria. In total, our experimental setup includes 32 different

defect scenarios spanning across 11 hardware projects, with 19

Category 1 (i.e., łeasyž) and 13 Category 2 (i.e., łhardž) defects. This

benchmark suite is 1.5ś10× as large as benchmark suites used in

the hardware diagnosis literature [12, 13, 29, 65, 74, 75].

4.2 Experimental Parameters

We refer to each execution of CirFix as a trial. Each trial is initialized

with a distinct random seed for reproducibility of our results, and

conducted on a quad-core 3.4GHz machine with hyperthreading

and 16GB of memory. We ran 5 independent CirFix trials for each

defect scenario, stoppingwhen an acceptable repair was found. Each

individual trial was terminated after 8 generations of evolution or

12 hours of wall-clock time (whichever came first).

For the GP parameters, we use population size popSize = 5000,

repair template threshold rtThreshold = 0.2, mutThreshold = 0.7. In

Table 3: Repair results for CirFix. łCatž indicates the cate-

gory for the defect, łRepair Timež shows the time for re-

pair (in seconds), and a missing time for repair indicates

no repair was found in 5 independent trials. CirFix pro-

duced plausible repairs to 21 of the 32 defect scenarios in

our benchmark suite, of which 16 were correct upon man-

ual inspection (denoted with a ✓).

Project Defect Description Cat Repair

Time (s)

decoder_3_to_8 Two separate numeric errors 1 ✓13984.3

Incorrect assignment 2 Ð

counter Incorrect sensitivity list 1 ✓19.8

Incorrect reset 1 ✓32239.2

Incorrect incremental of counter 1 ✓27781.3

flip_flop Incorrect conditional 1 ✓7.8

Branches of if-statement swapped 1 ✓923.5

fsm_full Incorrect case statement 1 Ð

Incorrectly blocking assignments 1 4282.2

Assignment to next state and default

in case statement omitted

2 1536.4

Assignment to next state omitted, in-

correct sensitivity list

2 ✓37.0

lshift_reg Incorrect blocking assignment 1 ✓14.6

Incorrect conditional 1 ✓33.74

Incorrect sensitivity list 1 ✓7.8

mux_4_1 1 bit instead of 4 bit output 1 Ð

Hex instead of binary constants 1 10315.4

Three separate numeric errors 2 15387.9

i2c Incorrect sensitivity list 2 ✓183

Incorrect address assignment 2 57.9

No command acknowledgement 2 ✓1560.5

sha3 Off-by-one error in loop 1 ✓50.4

Incorrect bitwise negation 1 Ð

Incorrect assignment to wires 2 Ð

Skipped buffer overflow check 2 ✓50.0

tate_pairing Incorrect logic for bitshifting 1 Ð

Incorrect operator for bitshifting 1 Ð

Incorrect instantiation of modules 2 Ð

reed_solomon_ de-

coder

Insufficient register size for decimal

values

1 Ð

Incorrect sensitivity list for reset 2 ✓28547.8

sdram_controller Numeric error in definitions 1 Ð

Incorrect case statement 2 Ð

Incorrect assignments to registers dur-

ing synchronous reset

2 ✓16607.6

line with established practices from APR for software [39, 42, 63],

we use deletion, insertion, and replacement thresholds of 0.3, 0.3 and

0.4 respectively. For parent selection, we use a tournament size 𝑡 = 5

to increase the selection pressure on candidate variants [57]. For

elitism, we propagate the top 𝑒 = 5% candidates in each generation

to the next generation without any modifications.

For fitness evaluations, we use 𝜑 = 2 as additional weight as-

signed to bits with values of 𝑥 or 𝑧. This makes incorrect compar-

isons between ill-defined wires twice as detrimental to the fitness

score of a candidate repair as binary bit mismatches. We found that

a weight 𝜑 = 1 did not penalize such incorrect comparisons enough

(resulting in longer times to find a repair), while 𝜑 = 3 caused

too significant a drop in fitness for candidate variants (negatively

impacting the exploration of the search space for a repair).

While we leave a comprehensive study of CirFix’s parameter

sensitivity as future work, we evaluated other values suggested

by literature (e.g., smaller population sizes [41, 85]), and found no

significant differences in CirFix’s performance.

997



CirFix: Automatically Repairing Defects in Hardware Design Code ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

5 EXPERIMENTAL RESULTS

In this section, we present an empirical evaluation CirFix on our

benchmark suite of hardware defect scenarios. We address the

following research questions:

RQ1.What fraction of defect scenarios can CirFix repair?

RQ2. Does CirFix perform better at repairing Category 1 hard-

ware defects compared to Category 2 defects?

RQ3. How effective is the CirFix fitness function at guiding the

search for a repair to a circuit description?

RQ 4. How sensitive is CirFix to the quality of the information

for expected behavior?

5.1 RQ1. Repair Rate and Quality for CirFix

Repair Rate. Table 3 presents the repair results for each defect sce-

nario. CirFix produced plausible (i.e., testbench-adequate) repairs

for 21 of the 32 (65.6%) defects. Of the 11 defects that were not

repaired, 4 exhausted resource limits while 7 required edits not

supported by CirFix operators and repair templates. While a direct

comparison between CirFix and APR for software is not possible,

we observe that the repair rate of CirFix comparable to the re-

ported repair rates of well-known software repair approaches, e.g.,

GenProg (52.4%) [39] and Angelix (34.1%) [55]. When comparing

CirFix to a more straightforward search algorithm applying edits

at uniform to a circuit design, we found that the brute force algo-

rithm did not scale to the complexity of defects in our benchmark

suite and reported no repairs within the 12 hour resource bounds.

Though not part of a comprehensive scientific evaluation, when

tested on simple single-edit defects (not part of our benchmark

suite) in smaller projects from undergraduate courses, the brute-

force algorithm still took hours to find repairs that CirFix found in

seconds to minutes, highlighting CirFix’s efficient pruning of the

search space. We leave a full investigation of CirFix against more

straightforward search as future work. Note that we can not com-

pare CirFix to other baselines for hardware repair, since at the time

of writing, there are no baselines that operate on source code level

Verilog descriptions to automatically repair defects; indeed, that is

precisely the improvement CirFix brings over the state-of-the-art.

The average wall-clock time for a trial to find a repair was 2.03

hours, of which an average of over 90% was spent on fitness evalu-

ations (i.e., design simulations). Most non-repairs timed out after

12 hours, though defects for some projects with smaller search

spaces hit the 8 generation maximum first. These results are in line

with previously-reported patterns of behavior for APR for software,

supporting our hypothesis that the CirFix algorithm is capable of

performing as well on hardware design defects as established APR

approaches do on software.

We acknowledge that wall-clock runtime for CirFix on a given

defect can be longer than that of an expert human manually fix-

ing the defect. However, CirFix was designed to favor situations

in which developer time is significantly more expensive than ma-

chine time: it is often more cost-effective to run tools like CirFix

using inexpensive machine idle time and then to employ expen-

sive developer time to ensure the repairs are correct before being

synthesized [84]. As such, we see CirFix as being cost-effective in

terms of reducing the burden on designers.

Figure 3: A representative multi-edit repair by CirFix for a

defect in the sdram_controller benchmark. The original de-

fect, with amissing and an incorrect assignment, is shown in

red; the repaired code is shown in green. Edits on lines 8 and

9 correspond to insert and replace operations respectively.

Repair Quality. We follow the approach taken by Long and Ri-

nard [47] and manually analyze the 21 repairs produced by CirFix.

We found 5 to be correct and identical to a human repair, another

11 to be correct but different from a human repair, and the final 5

to be correct only with respect to the testbench (i.e., overfitting).2

While we acknowledge that having a single developer manually

examine a patch is not a substitute for a full human study on patch

correctness, this analysis adds some confidence that a majority of

the plausible repairs from CirFix do not overfit to the testbench (a

common problem in APR for software [38, 47, 73]), since we inspect

intermediate wire values when assigning fitness scores. Correct-

ness is critical in hardware designs (e.g., since manufactured chips

cannot be easily updated once deployed), and we note that our

use case does not involve deploying patches directly but instead

showing plausible patches to developers to reduce maintenance

costs [48, 84].

We observed that 7 out of the 21 minimized repairs were multi-

edit repairs, highlighting CirFix’s ability to produce repairs to de-

fects that require more than one change to the circuit design. By

comparison, common APR approaches for software usually only

produce single-edit repairs [21], and only recently have there been

works investigating multi-edit repairs [55, 67]. For instance, in a

faulty version of the sdram_controller benchmark, one of our

experts changed assignments to two wires to transplant a Category

2 defect, causing incorrect functionality in the host interface. CirFix

assigned this faulty design code a fitness value of 0.818 based on out-

put mismatch. CirFix repaired this defect scenario in 4.6 hours by

inserting a new assignment and modifying an existing assignment.

The original defect and the repaired code are shown in Figure 3.

This is an indicative instance of CirFix repairing Category 2 (i.e.,

łhardž) defects in circuit descriptions with multiple edits to the

faulty circuit design.

2We focus on correctness of a patch against the specification of the circuit (e.g.,
ensuring the absence of clock- or reset-domain issues) during our manual inspections.
The synthesizability of the design is left to be evaluated by the developer during the
validation phase of the hardware design process [80].

998



ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Hammad Ahmad, Yu Huang, Westley Weimer

CirFix produced plausible repairs to 21 out of 32 (65.6%)

defect scenarios in our benchmark suite, of which 16 repairs

were fully correct and 5 were correct only with respect to

the testbench. The CirFix repair rate is comparable to strong

results from APR for software, suggesting that our approach

brings the benefits of APR to hardware designs.

5.2 RQ2. Performance for Individual Defect
Categories

CirFix found plausible repairs to 12 out of 19 (63.2%) of Category 1

and 9 out of 13 (69.2%) of Category 2 defects. The average number of

fitness probes for a trial finding a repair to a Category 1 defect was

9500, taking an average wall-clock time of 2.07 hours to complete.

By comparison, the average number of probes for a trial repairing

a Category 2 defect was 5000, taking an average wall-clock time

of 1.97 hours to complete. We found no statistically significant

difference in the average amount of time to find a repair between

Category 1 and 2 defects (two-tailed Mann-Whitney U test, 𝑝 =

0.373), suggesting that for defects that CirFix is able to patch, the

repair can be produced in about the same time, regardless of the

category (and therefore, difficulty) of the defect.

The CirFix repair operators and repair templates were particu-

larly successful at repairing defects of both categories pertaining to

incorrect sensitivity lists for always blocks, and numeric errors in,

or omissions of assignments to wires and registers. On the other

hand, CirFix was less successful in defect scenarios where wires or

registers are defined incorrectly, or where modules are incorrectly

instantiated. For instance, in a Category 1 defect scenario for the

reed_solomon_decoder project, one of our experts changed the

size of a register to 8 bits before assigning a decimal value of 500 to

the register. This produces incorrect circuit behavior since 8 bits

are not sufficient to store a value of 500. CirFix could not produce

a repair to this defect scenario: none of its operators or repair tem-

plates are capable of increasing the number of bits allocated to the

integer 500. We note that while adding more repair templates can

help in such cases, in general, CirFix is able to repair both Category

1 and 2 defects with comparably high success rates.

CirFix performs equally well for Category 1 and Category

2 hardware defects, adding confidence that our approach

scales well to a variety of defect types in hardware design.

5.3 RQ3. Quality of Fitness Function

CirFix’s high repair rate suggests that our fitness function, coupled

with our testbench instrumentation approach, is highly effective at

guiding the search for repairs to faulty circuit designs. We observe

that for each change to design code that brings a candidate repair

closer to a correct repair, our fitness function shows a corresponding

increase in the candidate repair’s fitness (i.e., our fitness function

has a strong fitness distance correlation, a trait that makes genetic

algorithms thrive [32]). This is best observed in transplanted defects

that require multiple edits to the design code to be corrected. For

instance, one of our experts transplanted a defect in the counter

project that required three edits to the design be repaired. The triple-

edit repair produced by CirFix for this defect scenario incrementally

raised the fitness of the best candidate patch first from 0 to 0.58,

then to 0.77, and finally to 1.0 to produce a correct repair. Similar

behavior is seen for every other multi-edit repair produced by

CirFix, indicating that our fitness function is effective at capturing

incremental changes to a circuit design during the search for a

repair.

We also observe instanceswhere CirFix produces a repair deemed

unfit by our fitness function and instrumented testbench but con-

sidered correct by the original, unannotated testbench. We examine

one such case in detail, related to the out_stagemodule in the error

correction core reed_solomon_decoder. This module is responsi-

ble for generating output bytes from pipelining input memories.

A faulty version of this circuit obtained from one of our experts

removed the resetwire from the sensitivity list of an always block.

This caused incorrect resetting of output wires by the circuit. Our

fitness function assigns the incorrect design code a non-perfect

fitness value of 0.999. The original testbench, however, reports no

errors in the incorrect code. The final repair produced by CirFix

fixes this defect and passes all checks by the original testbench and

our instrumented testbench. This suggests that our fitness function

and testbench instrumentation can catch errors beyond the capabil-

ities of the original testbench without adding any additional testing

logic.

The CirFix fitness function is highly effective at capturing

incremental changes to a circuit’s design code to guide the

search for a repair, and has the potential to increase testing

prowess without any added testing logic to a bench.

5.4 RQ4. Sensitivity to Correctness
Information

Since the information for expected circuit behavior is a non-trivial

cost for our algorithm, we investigate the quality of the repairs

produced by CirFix as a function of the quality of this informa-

tion. We consider the defects in our benchmark suite repaired un-

der conditions where high quality guidelines for correctness were

available, since repairing the remaining defects with lower quality

information could be attributed to the randomness associated with

a stochastic approach.

As we varied the amount of correctness information (i.e., an-

notations of expected wire and register values) available from

100% → 50% → 25%, we observed the number of plausible re-

pairs transition from 21 → 20 → 20 and the number of correct

repairs go from 16→ 12→ 10. Breaking down the scenario where

only 50% of the correctness information was available, we observed

that 5 are correct and identical to a human repair, another 7 are

correct but different from a human repair, and the final 8 are cor-

rect only with respect to the testbench (including a partial repair

to a defect requiring multiple edits to be patched). Note that this

is a reduction of 25% in the number of correct repairs when the

correctness information is reduced by half. Indeed, of these plausi-

ble repairs, a total of 10 were identical to repairs produced under

conditions when the full expected behavior was available. For the

scenario where only a quarter of the expected behavior information

was available, we found that 4 are correct and identical to a human

repair, another 6 are correct but different from a human repair, and

the final 10 are correct only with respect to the testbench (including

a partial repairs). This corresponds to a decrease of only 37.5% in

999



CirFix: Automatically Repairing Defects in Hardware Design Code ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

the number of correct patches when the correctness information is

reduced by 75%.

Our results indicate that the repair rate, and, more importantly,

the quality of the repairs produced by CirFix, is not overly sensi-

tive to the quality of the provided expected behavior information.

Furthermore, reducing said behavior information does not increase

the manual burden of inspecting produced plausible patches, since

CirFix only reports the first plausible patch it finds (cf. program

repair for software, where developers may need to evaluate an in-

creasing number of plausible patches as the quality of the test suite

is degraded [37, 59]). This analysis gives confidence that even in

settings where high quality information for correct circuit behav-

ior might not be available, high marginal benefit and reduction in

maintenance costs are still obtainable from CirFix.

CirFix is not overly sensitive to the quality of the expected

circuit behavior information, yielding high repair rates and

quality even under settings when low quality correctness

information is used as input to the algorithm.

6 LIMITATIONS AND THREATS TO VALIDITY

Our results in Section 5 suggest that CirFix is highly effective at

automatically repairing defects in HDL descriptions. That said,

there are several limitations to our approach and threats to the

validity of our results that we describe in this section.

Timing bugs. Faults in HDL descriptions stemming from timing

flow issues and incorrect circuit behavior with respect to the clock

signal often go undetected by a traditional testbench, requiring

instead complicated analyses of waveforms from the simulation.

Such timing bugs are therefore not in scope of our approach that

heavily relies on testbenches to assess functional correctness of

designs. We note that while such bugs are complex to debug, they

represent only a subset of hardware defects in industry, and a non-

trivial amount of defects in hardware correspond to functional

correctness [16].

Threats to Validity. The parameters for the prototype imple-

mentation of CirFix are chosen based on empirical performance and

may not be optimal. We do note, however, that the repair operators,

fault and fix localization approaches, and representation choice for

repairs matter more than the actual values of the GP parameters

for APR [7].

Our benchmark defects may not be indicative of defects in real-

world hardware projects, posing a potential threat to external va-

lidity. To mitigate this threat, we evaluated CirFix on a variety of

hardware projects taken from different sources, and had expert

hardware designers transplant defects from their real-life expe-

rience with HDL designs covering a variety of defect types (see

Section 4.1.3).

7 RELATED WORK

Automatic Error Diagnosis and Correction in Hardware De-

signs.While a significant amount of work has been done in auto-

matic error diagnosis of hardware designs, the correction of such

errors automatically has not been well-explored to the best of our

knowledge. Techniques in the works of Jiang et al. [29] and Ran

et al. [65] employ software analysis approaches to identify state-

ments in design code responsible for defects, but suffer from high

false positive rates. Bloem and Wotawa [12] use formal analysis

of circuit descriptions to identify defects, but their approach re-

quires formal specifications for large real-world designs that are

not always available. Staber et al. [74] use state-transition analysis

to diagnose and correct hardware designs automatically, but their

techniques similarly do not scale to real-world circuits with large

state spaces. Our approach, by contrast, is more scalable to large,

real-world hardware descriptions. Chang et al. [13] explicitly insert

multiplexers to automatically diagnose faults in hardware designs

and suggest repairs; Madre et al. [49] use Boolean equation solving

to diagnose and rectify gate-level design errors. By contrast, our

technique applies to both behavioral (higher level) and RTL aspects

of a circuit design.

Automated Program Repair for Software. In the realm of

software, significant research effort has been devoted to repairing

bugs automatically over the last decade [21, 46, 58]. Automated

program repair usually takes as input source code with a determin-

istic bug and a test suite with at least one failing test that reveals

the bug, and aims to automatically generate fixes to the buggy

code. Test suite based repair, where test cases are used to guide

the search for a patch, can be further divided into generate-and-

validate and semantics-driven approaches. Generate-and-validate

techniques produce candidate patches for the buggy code and evalu-

ate them against the test suite to check if all tests pass [2, 39, 63, 64].

Semantics-driven approaches first extract constraints on a program

based on test suite execution and then use these constraints to syn-

thesize a patch [52, 54, 55, 61]. While software approaches to APR

make use of test suites to evaluate candidate repairs, CirFix uses

instrumented hardware testbenches to make visible the internal

and external behavior of a simulated circuit for fitness evaluation.

Additionally, APR for software usually uses spectrum-based fault

localization to implicate faulty code, whereas CirFix uses our novel

fault localization approach supporting the analysis of parallel hard-

ware descriptions.

8 CONCLUSION

This paper presents CirFix, a framework for automatically repair-

ing defects in hardware designs implemented in languages like

Verilog. CirFix makes use of readily-available artifacts included in

the hardware design process (e.g., testbenches) to diagnose and

repair defects in both behavioral and RTL designs in the circuit

description. These repairs can then be shown to developers for vali-

dation before the synthesis phase, reducing maintenance costs. The

testbench-based evaluation and the parallel structure of hardware

designs pose challenges that render traditional APR approaches

from software inapplicable to the hardware domain. We present

two key insights to bridge this gap. First, we propose a method to

instrument hardware testbenches to admit a circuit’s behavior to

guide the search for repairs. We present a novel fitness function

tailored that performs a bit-level comparison of the made-visible

output wire values against expected behavior to assess functional

correctness of candidate repairs. Second, we present a novel fault

localization approach based on a fixed point analysis of assign-

ments made to registers and output wires to implicate statements

for defects. Our systematic evaluation of CirFix presents a new

1000



ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Hammad Ahmad, Yu Huang, Westley Weimer

benchmark suite of 32 defect scenarios transplanted by three hard-

ware experts across 11 different Verilog projects. CirFix produces

plausible repairs for 21 out of 32 and fully correct repairs for 16 out

of 32 of the Verilog defects within reasonable resource bounds.

ACKNOWLEDGMENTS

We gratefully acknowledge the partial support of the NSF (CCF

1908633, CCF 1763674) and a Google Faculty Research Award. Toy-

ota Research Institute (łTRIž) provided funds to partially assist the

authors with their research, but this article solely reflects the opin-

ions and conclusions of its authors and not TRI or any other Toyota

entity.

A ARTIFACT APPENDIX

A.1 Abstract

We provide the public repository for CirFix, both on Zenodo and

GitHub. The artifact includes instructions for installing and running

CirFix, as well as scripts and instructions used to reproduce core

results from our paper.

A.2 Artifact Check-List (Meta-Information)
• Program: python3.6.8, pyverilog-1.2.1, iverilog, VCS

• Run-time environment: Red Hat Enterprise Linux 7.9

• Hardware: Intel quad-core 3.4GHz machine with hyperthreading

and 16GB of memory

• Output: Repair patchlist (i.e., sequence of edits to source code)

fixing a defect, if a repair is found

• Experiments: Running CirFix on the defects in our benchmark

suite, runtime analysis of CirFix

• How much disk space required (approximately)?: 5GB

• How much time is needed to prepare workflow

(approximately)?: <1 hour

• Howmuch time is needed to complete experiments (approxi-

mately)?: 15-20 hours (longer experiments can be run concurrently

and overnight)

• Publicly available?: Yes (GitHub repository:

https://github.com/hammad-a/verilog_repair)

• Code licenses (if publicly available)?:MIT License

• Archived (provide DOI)?: Available at Zenodo:

https://doi.org/10.5281/zenodo.5846419

A.3 Description

The artifact contains all of CirFix’s source code as well as the

instructions to install and run CirFix and its dependencies. The

README.md files at the root of the repository and the /prototype

and /pyverilog_changes directories contain all of the instructions

used in the Artifact Evaluation process.

A.3.1 How to Access the Artifact. CirFix is available at our public

GitHub repository as well as an archive on Zenodo (see Appen-

dix A.2).

A.3.2 Hardware Dependencies. The artifact does not have any ex-

plicit dependencies, though older, slower hardware might take

slightly longer to reproduce our results. For our experiments, we

used an Intel quad-core 3.4GHz machine with hyperthreading and

16GB of memory.

A.3.3 Software Dependencies. CirFix requires Python 3.6.8, PyVer-

ilog version 1.2.1, and Icarus Verilog. It also requires Synopsys VCS

simulator (commercial license) to simulate Verilog designs.

A.4 Installation

This section assumes that users already have access to the Synopsys

VCS tool. Note that alternative Verilog simulation tools may be used,

but would likely require modifications to the scripts to support the

API for the simulation tool.

Users first need to install Python 3.6.8 and all external Python

dependencies (listed under the README.md file at the root of the

repository). Some source files for PyVerilog need to be changed

to support CirFix; instructions to do so can be found at /pyver-

ilog_changes/README.md. Users then need to configure CirFix to

run on a defect by editing the configuration file (located at /proto-

type/repair.conf). This involves setting the source file, testbench,

correctness information, and evaluation script paths. Users also

need to configure the CirFix GP parameters if necessary (we include

our default values in the configuration file). The detailed instruc-

tions for this process are included in the README file located at

/prototype/README.md.

A.5 Experiment Workflow

After all dependencies have been installed and the configuration file

set, users may run the outer CirFix script (/prototype/repair.py) to

start a CirFix run using the terminal command python3 repair.py.

The script invokes calls to PyVerilog to parse the Verilog source

code into a program AST, which is then manipulated to edit the

source code. For every change to the AST, CirFix re-generates the

Verilog source code before passing it on to the Synopsys VCS simu-

lator, which in turn uses the new code and the provided testbench

to generate the circuit output on given input stimuli. The produced

circuit output is then passed back to CirFix and compared against

developer provided circuit behavior information to assess the cor-

rectness of the produced circuit design. CirFix terminates when

it finds a design producing output that matches expected behav-

ior. Users may pass the log=true flag to store detailed logs in the

/prototype/repair_logs directory.

A.6 Evaluation and Expected Results

The artifact provides instructions for reproducing the main re-

sults from CirFix’s evaluation (Table 3). Every CirFix execution

(or trial) that finds a repair to a bug ends with the minimized

repair patchlist (i.e., a sequence to edits to the source code that

ultimately repair the defect). This repair patchlist can be verified

against our reported results (Table 3; raw data included in /pro-

totype/experiments_results.xlsx), along with the time to find the

repair. We also provide instructions on how to use this repair patch-

list to produce Verilog source code for inspection in the file /proto-

type/README.md.

A.7 Notes

We hope to maintain CirFix as an open-source tool. Any issues that

are found with the available artifact or any questions that arise can

be submitted as GitHib issues on our repository or communicated

via email.

1001

https://github.com/hammad-a/verilog_repair
https://doi.org/10.5281/zenodo.5846419
https://github.com/hammad-a/verilog_repair/blob/master/pyverilog_changes/README.md
https://github.com/hammad-a/verilog_repair/blob/master/pyverilog_changes/README.md
https://github.com/hammad-a/verilog_repair/blob/master/prototype/repair.conf
https://github.com/hammad-a/verilog_repair/blob/master/prototype/repair.conf
https://github.com/hammad-a/verilog_repair/blob/master/prototype/README.md
https://github.com/hammad-a/verilog_repair/blob/master/prototype/repair.py
https://github.com/hammad-a/verilog_repair/blob/master/prototype/experiments_results.xlsx
https://github.com/hammad-a/verilog_repair/blob/master/prototype/experiments_results.xlsx
https://github.com/hammad-a/verilog_repair/blob/master/prototype/README.md
https://github.com/hammad-a/verilog_repair/blob/master/prototype/README.md
https://github.com/hammad-a/verilog_repair/


CirFix: Automatically Repairing Defects in Hardware Design Code ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. 2009. A

practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780ś1792.

[2] Thomas Ackling, Bradley Alexander, and Ian Grunert. 2011. Evolving patches
for software repair. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation. 1427ś1434.

[3] Sheeva Afshan, Phil McMinn, and Mark Stevenson. 2013. Evolving Readable
String Test Inputs Using a Natural Language Model to Reduce Human Oracle
Cost. In 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation. 352ś361. https://doi.org/10.1109/ICST.2013.11

[4] KK Aggarwal, Yogesh Singh, Arvinder Kaur, and OP Sangwan. 2004. A neural
net based approach to test oracle. ACM SIGSOFT Software Engineering Notes 29,
3 (2004), 1ś6.

[5] Hiralal Agrawal, Joseph R Horgan, Saul London, and W Eric Wong. 1995. Fault
localization using execution slices and dataflow tests. In Proceedings of Sixth
International Symposium on Software Reliability Engineering. ISSRE’95. IEEE, 143ś
151.

[6] Nada Alsolami, Qasem Obeidat, and Mamdouh Alenezi. 2019. Empirical analysis
of object-oriented software test suite evolution. International Journal of Advanced
Computer Science and Applications 10, 11 (2019).

[7] Andrea Arcuri and Gordon Fraser. 2011. On parameter tuning in search based
software engineering. In International Symposium on Search Based Software Engi-
neering. Springer, 33ś47.

[8] Desire Athow. 2014. Pentium fdiv: The processor bug that shook the
world. https://www.techradar.com/news/computing-components/processors/
pentium-fdiv-the-processor-bug-that-shook-the-world-1270773

[9] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507ś525. https://doi.org/10.1109/TSE.2014.2372785

[10] Lionel Bening and Harry Foster. 2001. RTL Formal Verification. Principles of
Verifiable RTL Design: A functional coding style supporting verification processes in
Verilog (2001), 103ś129.

[11] Robert Binder. 2000. Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional.

[12] Roderick Bloem and Franz Wotawa. 2002. Verification and fault localization for
VHDL programs. Journal of the Telematics Engineering Society (TIV) 2 (2002),
30ś33.

[13] Kai-hui Chang, IlyaWagner, Valeria Bertacco, and Igor LMarkov. 2007. Automatic
error diagnosis and correction for RTL designs. In 2007 IEEE International High
Level Design Validation and Test Workshop. IEEE, 65ś72.

[14] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference on Computer and
communications security. 559ś572.

[15] Junjie Chen, Yanwei Bai, Dan Hao, Lingming Zhang, Lu Zhang, Bing Xie, and
Hong Mei. 2016. Supporting oracle construction via static analysis. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
178ś189.

[16] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi,
Hareesh Khattri, Jason M Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran.
2019. Hardfails: Insights into software-exploitable hardware bugs. In USENIX
Security Symposium. 213ś230.

[17] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting con-
trolled experimentation with testing techniques: An infrastructure and its poten-
tial impact. Empirical Software Engineering 10, 4 (2005), 405ś435.

[18] Robert Feldt. 1998. Generating diverse software versions with genetic program-
ming: an experimental study. IEE Proceedings-Software 145, 6 (1998), 228ś236.

[19] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009.
A genetic programming approach to automated software repair. In Proceedings
of the 11th Annual conference on Genetic and evolutionary computation. 947ś954.

[20] Harry Foster. 2008. Assertion-based verification: Industry myths to realities
(invited tutorial). In International Conference on Computer Aided Verification.
Springer, 5ś10.

[21] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic software
repair: A survey. IEEE Transactions on Software Engineering 45, 1 (2017), 34ś67.

[22] Farshad Gholami, Niousha Attar, Hassan Haghighi, Mojtaba Vahidi Asl, Meysam
Valueian, and Saina Mohamadyari. 2018. A classifier-based test oracle for embed-
ded software. In 2018 Real-Time and Embedded Systems and Technologies (RTEST).
104ś111. https://doi.org/10.1109/RTEST.2018.8397165

[23] Mohamed Hanafy, Hazem Said, and Ayman M. Wahba. 2015. New methodology
for digital design properties extraction from simulation traces. In 2015 Tenth
International Conference on Computer Engineering Systems (ICCES). 91ś98. https:
//doi.org/10.1109/ICCES.2015.7393026

[24] Mark Harman, Sung Gon Kim, Kiran Lakhotia, Phil McMinn, and Shin Yoo. 2010.
Optimizing for the Number of Tests Generated in Search Based Test Data Gener-
ation with an Application to the Oracle Cost Problem. In 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops. 182ś191.

https://doi.org/10.1109/ICSTW.2010.31
[25] Samuel Hertz, David Sheridan, and Shobha Vasudevan. 2013. Mining Hardware

Assertions With Guidance From Static Analysis. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32, 6 (2013), 952ś965. https:
//doi.org/10.1109/TCAD.2013.2241176

[26] Yu Huang, Hammad Ahmad, Stephanie Forrest, and Westley Weimer. 2021. Ap-
plying Automated Program Repair to Dataflow Programming Languages. In GI
@ ICSE 2021, Justyna Petke, Bobby R. Bruce, Yu Huang, Aymeric Blot, Westley
Weimer, and W. B. Langdon (Eds.). IEEE, internet.

[27] IEEE. 2006. IEEE Standard for Verilog Hardware Description Language. IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001) (2006), 1ś590. https://doi.org/10.1109/
IEEESTD.2006.99495

[28] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. 2016. Test
oracle assessment and improvement. In Proceedings of the 25th International
Symposium on Software Testing and Analysis. 247ś258.

[29] Tai-Ying Jiang, C-NJ Liu, and Jing Ya Jou. 2005. Estimating likelihood of correct-
ness for error candidates to assist debugging faulty HDL designs. In 2005 IEEE
International Symposium on Circuits and Systems. IEEE, 5682ś5685.

[30] James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 273ś282.

[31] James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002. IEEE, 467ś477.

[32] Terry Jones and Stephanie Forrest. 1995. Fitness Distance Correlation as a
Measure of Problem Difficulty for Genetic Algorithms. In ICGA, Vol. 95. 184ś192.

[33] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437ś440.

[34] Robert Keim. 2020. What is a Hardware Description Language (HDL)? Retrieved
Jan 11, 2021 from https://www.allaboutcircuits.com/technical-articles/what-is-a-
hardware-description-language-hdl/.

[35] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 802ś811.

[36] John R Koza. 1992. Genetic programming: on the programming of computers by
means of natural selection. Vol. 1. MIT press.

[37] Xuan-Bach D. Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina
Pasareanu. 2019. On Reliability of Patch Correctness Assessment. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). 524ś535.
https://doi.org/10.1109/ICSE.2019.00064

[38] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Overfitting
in semantics-based automated program repair. Empirical Software Engineering
23, 5 (2018), 3007ś3033.

[39] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In 2012 34th International Conference on Software Engineering (ICSE).
IEEE, 3ś13.

[40] Claire Le Goues, Stephanie Forrest, andWestleyWeimer. 2013. Current challenges
in automatic software repair. Software quality journal 21, 3 (2013), 421ś443.

[41] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic
Method for Automatic Software Repair. IEEE Transactions on Software Engineering
38, 1 (2012), 54ś72.

[42] Claire Le Goues, Westley Weimer, and Stephanie Forrest. 2012. Representations
and operators for improving evolutionary software repair. In Proceedings of the
14th annual conference on Genetic and evolutionary computation. 959ś966.

[43] Robert Lemos. 1997. Intel releases fix FOR F00F bug. https://www.zdnet.com/
article/intel-releases-fix-for-f00f-bug/

[44] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar:
revisiting template-based automated program repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 31ś42.

[45] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 456ś467.

[46] Yuzhen Liu, Long Zhang, and Zhenyu Zhang. 2018. A Survey of Test Based
Automatic Program Repair. JSW 13, 8 (2018), 437ś452.

[47] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. 298ś312.

[48] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach. In Proceedings of the 29th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for Computing Machinery, New York, NY, USA, 75ś87.
https://doi.org/10.1145/3395363.3397351

[49] J. C. Madre, O. Coudert, and J. P. Billon. 1989. Automating the diagnosis and the
rectification of design errors with PRIAM. In 1989 IEEE International Conference

1002

https://doi.org/10.1109/ICST.2013.11
https://www.techradar.com/news/computing-components/processors/pentium-fdiv-the-processor-bug-that-shook-the-world-1270773
https://www.techradar.com/news/computing-components/processors/pentium-fdiv-the-processor-bug-that-shook-the-world-1270773
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/RTEST.2018.8397165
https://doi.org/10.1109/ICCES.2015.7393026
https://doi.org/10.1109/ICCES.2015.7393026
https://doi.org/10.1109/ICSTW.2010.31
https://doi.org/10.1109/TCAD.2013.2241176
https://doi.org/10.1109/TCAD.2013.2241176
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://www.allaboutcircuits.com/technical-articles/what-is-a-hardware-description-language-hdl/
https://www.allaboutcircuits.com/technical-articles/what-is-a-hardware-description-language-hdl/
https://doi.org/10.1109/ICSE.2019.00064
https://www.zdnet.com/article/intel-releases-fix-for-f00f-bug/
https://www.zdnet.com/article/intel-releases-fix-for-f00f-bug/
https://doi.org/10.1145/3395363.3397351


ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Hammad Ahmad, Yu Huang, Westley Weimer

on Computer-Aided Design. Digest of Technical Papers. 30ś33. https://doi.org/10.
1109/ICCAD.1989.76898

[50] M Morris Mano and Michael Ciletti. 2013. Digital design: with an introduction to
the Verilog HDL. Pearson.

[51] L. I. Manolache and Derrick G. Kourie. 2001. Software testing using model
programs. Software: Practice and Experience 31, 13 (2001), 1211ś1236.

[52] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Library
for Java. In Proceedings of ISSTA. https://doi.org/10.1145/2931037.2948705

[53] Phil McMinn. 2009. Search-based failure discovery using testability transforma-
tions to generate pseudo-oracles. In Proceedings of the 11th Annual conference on
Genetic and evolutionary computation. 1689ś1696.

[54] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking
for simple program repairs. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1. IEEE, 448ś458.

[55] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th international conference on software engineering. 691ś701.

[56] Brad L Miller and David E Goldberg. 1996. Genetic algorithms, selection schemes,
and the varying effects of noise. Evolutionary computation 4, 2 (1996), 113ś131.

[57] Brad L Miller, David E Goldberg, et al. 1995. Genetic algorithms, tournament
selection, and the effects of noise. Complex systems 9, 3 (1995), 193ś212.

[58] Martin Monperrus. 2018. The Living Review on Automated Program Repair. Tech-
nical Report hal-01956501. HAL/archives-ouvertes.fr.

[59] Manish Motwani. 2021. High-Quality Automated Program Repair.
arXiv:2104.07851 [cs.SE]

[60] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Transactions on software engineering and method-
ology (TOSEM) 20, 3 (2011), 1ś32.

[61] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 772ś781.

[62] Riccardo Poli and William B Langdon. 1998. Genetic programming with one-
point crossover. In Soft Computing in Engineering Design and Manufacturing.
Springer, 180ś189.

[63] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering. 254ś265.

[64] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis. 24ś36.

[65] Jiann-Chyi Ran, Yi-Yuan Chang, and Chia-Hung Lin. 2003. An efficient mecha-
nism for debugging RTL description. In The 3rd IEEE International Workshop on
System-on-Chip for Real-Time Applications, 2003. Proceedings. IEEE, 370ś373.

[66] Simone Romano, Christopher Vendome, Giuseppe Scanniello, and Denys Poshy-
vanyk. 2018. A multi-study investigation into dead code. IEEE Transactions on
Software Engineering (2018).

[67] Seemanta Saha et al. 2019. Harnessing evolution for multi-hunk program repair.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 13ś24.

[68] Frank Schirrmeister, Michael McNamara, Larry Melling, and Neeti Bhatnagar.
2012. Debugging at the hardware/software interface. https://www.embedded-
computing.com/embedded-computing-design/debugging-at-the-hardware-
software-interface

[69] Eric Schulte, Zachary P Fry, Ethan Fast, Westley Weimer, and Stephanie Forrest.
2014. Software mutational robustness. Genetic Programming and Evolvable
Machines 15, 3 (2014), 281ś312.

[70] Charles L Seitz, C Mead, and L Conway. 1980. System timing. Introduction to
VLSI systems (1980), 218ś262.

[71] Seyed Reza Shahamiri, Wan Mohd Nasir Wan Kadir, Suhaimi Ibrahim, and Siti
Zaiton Mohd Hashim. 2011. An automated framework for software test oracle.
Information and Software Technology 53, 7 (2011), 774ś788. https://doi.org/10.
1016/j.infsof.2011.02.006

[72] Seyed Reza Shahamiri,WanMohdNasirWanKadir, and Siti ZaitonMohd-Hashim.
2009. A Comparative Study on Automated Software Test Oracle Methods. In
2009 Fourth International Conference on Software Engineering Advances. 140ś145.
https://doi.org/10.1109/ICSEA.2009.29

[73] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. 532ś543.

[74] Stefan Staber, Barbara Jobstmann, and Roderick Bloem. 2005. Finding and fixing
faults. In Advanced Research Working Conference on Correct Hardware Design and
Verification Methods. Springer, 35ś49.

[75] Sangeetha Sudakrishnan, Janaki Madhavan, E James Whitehead Jr, and Jose
Renau. 2008. Understanding bug fix patterns in verilog. In Proceedings of the 2008
international working conference on Mining software repositories. 39ś42.

[76] Stuart Sutherland. 2017. RTL Modeling with SystemVerilog for Simulation and
Synthesis Using SystemVerilog for ASIC and FPGA Design. Sutherland HDL, Incor-
porated.

[77] Synopsys. 2020. VCS Functional Verification Solution. https://www.synopsys.
com/verification/simulation/vcs.html

[78] VCS Synopsys. 2004. Verilog Simulator. Avaliable HTTP: http://www. synopsys.
com/products/simulation/simulation. html (2004).

[79] Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A python-based hardware de-
sign processing toolkit for verilog hdl. In International Symposium on Applied
Reconfigurable Computing. Springer, 451ś460.

[80] Vaibbhav Taraate. 2016. Digital logic design using verilog: coding and RTL synthesis.
Springer.

[81] Christopher S Timperley. 2017. Advanced techniques for search-based program
repair. Ph. D. Dissertation. University of York.

[82] JA Vasconcelos, Jaime Arturo Ramirez, RHC Takahashi, and RR Saldanha. 2001.
Improvements in genetic algorithms. IEEE Transactions on magnetics 37, 5 (2001),
3414ś3417.

[83] Jayce Wagner. 2018. Intel Could Make Billions Off of Meltdown & Spec-
tre. https://www.digitaltrends.com/computing/intel-could-make-billions-off-
meltdown-spectre/

[84] Westley Weimer. 2006. Patches as Better Bug Reports. In Proceedings of the 5th
International Conference on Generative Programming and Component Engineering
(Portland, Oregon, USA) (GPCE ’06). Association for Computing Machinery, New
York, NY, USA, 181ś190. https://doi.org/10.1145/1173706.1173734

[85] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. 2010.
Automatic program repair with evolutionary computation. Commun. ACM 53, 5
(2010), 109ś116.

[86] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In 2009 IEEE 31st
International Conference on Software Engineering. IEEE, 364ś374.

[87] Andreas Zeller. 2001. Automated debugging: Are we close. Computer 11 (2001),
26ś31.

1003

https://doi.org/10.1109/ICCAD.1989.76898
https://doi.org/10.1109/ICCAD.1989.76898
https://doi.org/10.1145/2931037.2948705
https://arxiv.org/abs/2104.07851
https://www.embedded-computing.com/embedded-computing-design/debugging-at-the-hardware-software-interface
https://www.embedded-computing.com/embedded-computing-design/debugging-at-the-hardware-software-interface
https://www.embedded-computing.com/embedded-computing-design/debugging-at-the-hardware-software-interface
https://doi.org/10.1016/j.infsof.2011.02.006
https://doi.org/10.1016/j.infsof.2011.02.006
https://doi.org/10.1109/ICSEA.2009.29
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.digitaltrends.com/computing/intel-could-make-billions-off-meltdown-spectre/
https://www.digitaltrends.com/computing/intel-could-make-billions-off-meltdown-spectre/
https://doi.org/10.1145/1173706.1173734

	Abstract
	1 Introduction
	2 Motivating Example
	3 Technical Approach
	3.1 Fault Localization
	3.2 Fitness Evaluation
	3.3 Repair Templates
	3.4 Repair Operators
	3.5 Selection
	3.6 Fix Localization
	3.7 Repair Minimization

	4 Experimental Setup
	4.1 Benchmark Suite for Hardware Defects
	4.2 Experimental Parameters

	5 Experimental Results
	5.1 RQ1. Repair Rate and Quality for CirFix
	5.2 RQ2. Performance for Individual Defect Categories
	5.3 RQ3. Quality of Fitness Function
	5.4 RQ4. Sensitivity to Correctness Information

	6 Limitations and Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Notes

	References

