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ABSTRACT

Background: Automated program repair and other bug-fixing ap-
proaches are gaining attention in the software engineering commu-
nity. Automation shows promise in reducing bug fixing costs. How-
ever, many developers express reluctance about accepting machine-
generated patches into their codebases.

Aims: To contribute to the scientific understanding and the
empirical investigation of human trust and perception with regards
to automation in software maintenance.

Method: We design and conduct an eye-tracking study investi-
gating how developers perceive trust as a function of code prove-
nance (i.e., author or source). We systematically vary provenance
while controlling for patch quality.

Results: In our study of ten participants, overall visual code
scanning and the distribution of attention differed across identi-
cal code patches labeled as human- vs. machine-written. Partici-
pants looked more at the source code for human-labeled patches
and looked more at tests for machine-labeled patches. Participants
judged human-labeled patches to have better readability and coding
style. However, participants were more comfortable giving a critical
task to an automated program repair tool.

Conclusion: We find that there are significant differences in
code review behavior based on trust as a function of patch prove-
nance. Further, we find that important differences can be revealed
by eye tracking. Our results may inform the subsequent design
and analysis of automated repair techniques to increase developers’
trust and, consequently, their deployment.

CCS CONCEPTS

«+ Software and its engineering — Software creation and man-
agement.
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1 INTRODUCTION

Software maintenance, especially involving source code, is critical
to software development. A number of source code management
processes, tools and practices help developers coordinate as a team
and improve software. Code review involves one or more developers
examine a proposed change to a codebase (e.g., a patch and its
associated documentation) written by others and deciding whether
the change should be accepted and integrated into the codebase or
rejected for further refinement. Previous research has found that
that code reviewers do not always prioritize the actual content and
quality of a proposed patch, and studies of the effects of various
biases (e.g., gender bias) on code review have just begun [6, 14, 40].
This paper focuses on code review from a human trust perspective.

In Psychology, researchers have explored several metrics to in-
fer and measure trust. Much previous work has focused on self-
reporting (i.e., subjective scales) such as think-aloud protocols, sur-
veys, and interviews to measure trust [22], which suffer from the
Hawthorn (observer) effect [4, 5] and may not be reliable in a soft-
ware maintenance context [7, 15]. A few recent studies have used
eye tracking as an objective, biologically-based measure to provide
insights into the cognitive processes and the perception of trust in
a continuous, non-subjective and non-intrusive manner [8, 9, 22].
These studies suggest a correlation between users’ trust and their
visual scanning behavior. By providing a dynamic pattern of visual
attentions [16, 35], eye tracking offers numerous clues to underlying
cognitive processes of the participants, helps to measure workload
while performing tasks [29, 35, 36], and determines how and when
participants choose and encode information [10, 29, 34].

This study assesses the perception of trust in code review us-
ing an eye tracker and examines whether the provenance of the
patch impacts that perception of trust and any associated software
engineering behaviors.

In the last decade, there has been a rapid rise in the research and
usage of Automated Program Repair (APR) tools in both academia
and industry [11, 27]. Recently, both larger (e.g., Facebook’s Sap-
Fix [24]) and smaller (e.g., Janus Manager [12]) companies have
deployed APR tools. However, many developers report an unwill-
ingness to incorporate automated patches into their code bases [20]
and expert programmers are less accepting of patches generated by
APR tools [31]. However, little research to date has investigated APR
from a human factors perspective focusing on the psychological
processes behind the perception of trust (cf. [1, 2, 7, 28, 31]).

In this work, we present the preliminary results of a controlled
human study involving ten participants to evaluate the potential
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bias that developers may have toward automated tools. Controlling
for quality, we manipulate the provenance (i.e., author or source)
of a patch, labeling it as either human- or machine-written, regard-
less of its actual source. We measure code review outcomes and
performance coupled with visual attention distributions to provide
insights into developers’ cognitive processes when evaluating and
reviewing six code patches. By manipulating the apparent author
name (i.e., by labeling patches as human-generated vs. machine-
generated), we perform a controlled experiment and obtain a lens
to investigate participants’ subjective trust and affected or biased
actions, purely as a function of patch provenance, independent of
patch quality.

Our results show that developers’ perception of trust in the
patch’s author plays a crucial role in evaluating patches. While
we observe no biases (measured by acceptance rate) or signifi-
cant difference in high-level software maintenance outcomes (e.g.,
accuracy, time spent, etc.), our recorded eye-movements data re-
veals different scanning patterns for human-labeled patches com-
pared to the machine-labeled ones. For example, participants spend
more visual effort evaluating the context class and its methods for
human-labeled patches and spend more time evaluating the tests
for machine-labeled patches, in a statistically-significant manner.
Moreover, our participants report that human-labeled patches are
of higher quality with regards to coding style and readability, but
at the same time they are more likely to assign a critical task to
an automated tool rather than a human developer. This positive
attitude toward automated patches in a specific circumstance (i.e.,
critical deployment) provides nuance to some previous work [31]
that found a more generally negative attitude overall. APR patches
often overfit to an available test suite and thus violate conventional
programming approaches, can be complex or difficult to read, and
may not address the root of the problem (e.g., [19, 21]). Since we
control for patch quality, our results highlight the importance of
improving the trust perception of APR patches (i.e., independent of
their quality per se) to increase their use and acceptance.

2 RELATED WORK

In this section, we present background on eye tracking and trust
studies in code review and automated program repair.

Trust and automated program repair. Automated program
repair (APR) generates patches to fix defects in existing source
code. While a rich body of research has been done on techniques,
efficiency and quality concerns for APR (see [11, 27] for surveys),
researchers have focused on trust in machine-generated repairs
in recent years. In the past, research has investigated the human
trust process in general (i.e., not software engineering) automation,
covering various aspects such as analyzing the effect of user per-
sonality over perceptions of x-ray screening tasks [26] and personal
factors in ground collision avoidance software [23]. However, in-
vestigation on APR from human factors perspectives is relatively
new. In [31], the authors found inexperienced programmers trust
APR more than human patches. Fry et al. [7] found what humans
report as being critical to patch maintainability might be different
from what is actually more maintainable. Kim et al. [17] generated
candidate patches following certain patterns and found that human
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developers view these pattern-based candidates as more accept-
able, but did not compare acceptability against a control group of
human-written patches for the same set of bugs.

Eye tracking and code review. Modern eye-tracking is an un-
obtrusive measure for visual focus by providing a reliable recording
of eye gaze data [10, 29, 36]. Researchers have used eye-tracking
techniques to investigate the viewing strategies of developers while
performing code review tasks. These studies include analyzing the
gaze patterns of developers in code review [41], understanding the
impact of expertise in viewing strategies [37], and detecting suspi-
cious code elements through viewing patterns [3]. They found that
a complete scan of the whole code helps students to find defects f
and share similar findings on code reading patterns. Besides general
code reviewing patterns, Ford et al. used eye-tacking to study the
influence of supplemental technical signals (such as the number of
followers, activity, names, or gender) on Pull Request acceptance
via an eye tracker [6].

To the best of our knowledge, this is the first eye-tracking study
of examining trust toward patches of controlled quality labeled as
generated by either machine or human developers.

3 EXPERIMENT SETUP AND METHOD

We recruited ten participants and conducted an exploratory study
to investigate how developers trust and review source code on a
large open-source project. Each participant worked on six code
review tasks and reviewed six patches while we recorded their
eye-movement data. All materials used in the study, along with
de-identified responses, are available at the project’s website.!

3.1 Experiment Measures

We assess both participant performance (i.e., objective behavior
during code review) and also trust intentions (i.e., subjective self-
evaluations).

Performance: we record the participant’s performance on code
review tasks in terms of the the amount of cognitive load (visual
effort) measured by eye-tracking data, the amount of time spent
finishing the task (total time spent), and the number of correct
answers (accuracy).

Eye gaze data is typically divided into two categories [30]. First,
a fixation is a spatially-stable eye gaze that lasts for approximately
200-300 ms. Researchers in psychology claim that most of the
information acquisition and processing occur during fixations [16,
29] and that a small set of fixations suffices for the human brain
to acquire and process a complex visual input [10, 16]. Second, a
saccade is a continuous and rapid eye-gaze movement that occurs
between fixations. Cognitive processing during saccades is minimal.

Eye gaze data is also studied with respect to certain areas of
interest (AOIs) in a stimulus. AOIs are manually defined by the
experimenter based on research questions and variables [10, 35]. In
this experiment, we consider the following AOIs: 1) bug report text,
2) entire class file containing the patched code, 3) specific methods
containing the patched code, 4) entire unit test file containing tests
that evaluate the patch, and 5) specific unit tests methods that
evaluate the patch.

!https://web.eecs.umich.edu/~weimerw;/data/trust-perception/
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Table 1: Eye tracking metrics used to evaluate participants’ trust while reviewing human- vs. machine-labeled patches.

Metric Description

Hypotheses tested in this paper

Average Fixation The average duration of all fixations in an AOI

Duration (ms) or the stimulus.

Lower trust leads to longer fixation durations [22].

Fixation Count
the task [16].

The number of attention shifts needed to finish

Lower trust leads to a less organized search, which results in a
higher number of fixations and less efficiency [22].

Lower trust leads to a more random, less efficient search, asso-
ciated with shorter saccades.

Average Saccade The average length of all the saccades in an AOI
Length (px) or the stimulus.

Table 2: Participant demographics.
Characteristics All (10) Men (5) Women (5)
Age (n (%)

18-25 8 (80%) 5

25-30 2 (20%) 0
Class standing (n (%))

2nd & 3rd year 3 (30%) 0

4th Year 2 (20%) 2

M.S./PhD 5 (50%) 3

Overall Quality | ' 4,5

Trust for

Critical Tasks 7 4.3
Quality of the
Implemented - 3.6
Functionality
Readability - 3.2
Coding Style 3.6
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Figure 1: Participants’ perception and evaluation of patches
labeled as machine- or human-generated.
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We consider three metrics (shown in Table 1) related to efficiency
in searching and finding relevant data (i.e., fixation count) and
extracting information and an increased strain on the working
memory (i.e., fixation and saccade duration). We hypothesize that
low trust leads to lower efficiency, manifested as longer fixations, a
higher number of fixations, and shorter saccades.

Trust Intentions: we use subjective Likert-scale trust ratings,
consisting of five questions about the overall quality of the patches,
the level of trust for critical tasks, the quality of the implemented
functionality, patch readability, and patch coding style.

3.2 Participants and Recruitment

In our IRB-approved study, we recruited ten undergraduate and
graduate students in the Department of Computer Science at insti-
tution elided for blind review. Participants completed questionnaires
to gather basic demographic information, reported in Table 2. Par-
ticipants were recruited through email and were compensated with
a $25 voucher for their participation.

We also asked participants about their experience and familiar-
ity with programming, Java, and working with IDEs. Participants
reported an average of 4.5 years (SD = 0.5) of programming expe-
rience. All participants were familiar with OOP and Java and had
previous experience working with IDEs. Siegmund et al. [38] re-
ported that self-estimation is a reliable way to judge programming
experience, especially when working with students.

3.3 Software System and Tasks

We choose jFreeChart as the specimen system in this experiment.
JjFreeChart is a large open-source Java project that allows users to
draw and display charts in their applications. We use version 1.1.0,
released in 2015, which involves about 300 KLOC and about 94,000
Java classes. To present realistic code review tasks, we choose six
historical bugs shown in Table 3. One-third of the patches were pro-
posed by an APR tool and chosen from Defects4j-Repair project [25],
while the rest were historical human repairs selected from the
project’s repository. Each patch consists of code samples ranging
from 8 to 76 (Mean: 11 and SD: 13) lines of code and between 3 and
41 (Mean: 26 and SD: 23) repaired lines.

We randomly assigned the order of the six code review tasks for
each participant. Following our experimental control, we randomly
set the reported author label of three patches to be an automated
algorithm (i.e, “jGenProg”) and the other three to be a particular
invented human (i.e, “David Gilbert”). Each task included eval-
uating a patch by examining a bug report file that contains the
following information: actual bug report number and the date of
the report, the priority (high or low), a summary, the number and
the names of failing unit tests, author of the patch and the patch
itself which shows the code differences between the old version and
the proposed fix. During the experiment, participants had access to
the whole code repository and could freely navigate it through the
Eclipse IDE.

3.4 Procedure

Participants completed demographic information and background
surveys online before the study. We conducted the experiment in
a quiet room with an eye-tracking system; the participants were
seated approximately 70 cm away from the screen in a comfortable
swivel chair with armrests. Before running the experiment, all
participants signed a consent form and the experimenter verbally
explained the experiment’s procedure in detail. Participants were
informed that the experiment consisted of one Java project and that
they would be sequentially reviewing six patches. The experimenter
did not explain the particular goal of the experiment.
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Participants were given ten minutes per code review task and
were instructed to inform the experimenter if they finished early
to stop the tracking. To mitigate any learning effects, participants
received the six tasks in randomized order. To better control and
avoid any other factors impacting the results, the participants were
instructed to maintain the full-screen IDE setup, not use the debug-
ger, and not to browse the internet.

Participants were instructed to mark each code review task (i.e.,
each patch) as either “accept” and “reject” while evaluating the
implemented functionality and quality of the patch. Participants
also completed a post-questionnaire. To mitigate the stereotype
threat [33], we asked questions about coding knowledge and expe-
rience at the end of the study. In particular, women and underrep-
resented minorities experience the negative stereotype that they
have weaker abilities more strongly than others [39].

3.5 Equipment and Raw Measurements

We executed all experiments on a 27" monitor with a screen resolu-
tion of 1920x1080 pixels. We used the Tobii Pro X3-120 eye-tracker
[13], which can locate eye-gaze data in a code document at a gran-
ularity of a single line of 10pt text. To support scrolling, switching
between files, and editing files, we installed and used the iTrace
0.0.1A plugin [32], which gathers all necessary measurements while
allowing participants to interact with source code and other arti-
facts naturally. We subjected the recorded raw data to an iTrace
filter to generate fixation data.

4 DATA ANALYSIS AND EMERGING RESULTS

This research investigates developers’ perceptions of trustworthi-

ness in code patches and how patches’s apparent provenance biases

human efficiency and code review behavior. We hold the code qual-

ity constant and manipulate the patch’s provenance by labeling the

author as either human or machine. We focus the interpretation of

our results around answers to the following research questions:

RQ1. How well do participants’ self-reports regarding the role of
patches’ provenance align with our recorded data?

RQ2. How does a patch’s provenance impact the participants’
performance while reviewing the code?

RQ3. How does the provenance of a patch impact the participants’
code review behavior while reviewing the code?

4.1 RQ1. Self-Reporting and Trust

All ten participants provided answers for the post-experiment ques-
tionnaire and evaluated the quality of code patches. Figure 1 sum-
marizes the results. Regarding the readability and style, participants
assigned a higher score to human-labeled patches in a statistically
significant manner (Mann-Whitney test of readability and style
scores combined, W = 293, p = .008).

When comparing the patches’ overall quality, participants ranked
machine-labeled patches higher, and the result is statistically sig-
nificant (Mann-Whitney test, W = 12, p = .003). Participants also
feel more comfortable assigning critical tasks to the machine rather
than a human programmer (Mann-Whitney test, W = 9, p = .001).

In the same vein, Ryan et al. [31] reports that student program-
mers perceive machine-generated patch as more trustworthy. Pre-
vious research in automation [2, 31] reported a negative relation
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between tendency to trust and age. Our participants were young
students with limited working experience, so this may have im-
pacted the results. Further experimentation is required to study this
relationship better.

4.2 RQ2. Performance Differences

We investigate whether the patch’s provenance impacts the par-
ticipants’ overall performance measured by their accuracy, total
time spent, and the visual effort (See Table 4). The test of propor-
tion (Chi-squared test for significance) for accuracy and Wilcoxon
signed-rank test for time shows no difference between human- vs.
machine-labeled patches. On average, our participants are 8% less
likely to accept human-labelled patches. Yet, Chi-squared test re-
sults in no significant differences. The visual effort is measured
by fixation count, average fixation duration, and average saccade
length. Longer fixation time and saccade indicate more considerable
effort and higher cognitive load. No significant effect of provenance
was found on eye-tracking metrics in isolation.

Previous work reports that participants’ trust significantly im-
pacts various eye-tracking metrics over the system [8, 9, 22] How-
ever, even though participants’ self-report acknowledges a bias
against both machines (readability) and humans (quality), we find
no impact of the patch’s provenance on participants’ high-level
performance. With regard to overall behavior, such as acceptance
rates or time spent, participants were not influenced by provenance.
We next investigate how that equal time was spent differently as a
function of provenance.

4.3 ROQ3. Differences in Code Review Behaviour

We consider the impact of provenance on developers’ code review
behavior by analyzing the pattern and distribution of visual at-
tention. We calculate the total fixation time spent on each AOI
and compare the distribution of attention across AOIs for machine-
labeled vs. human-labeled patches. The general align-and-rank
non-parametric factorial analysis [42] reveals that there is a signifi-
cant interaction between provenance and the distribution of visual
attention (F(1,5) = 2.149, p < 0.05). As shown in Figure 2, the code
scanning behavior of participants is different across patches. These
results confirm that the relevance of different code areas varies
significantly for participants based on the patch’s apparent author.
Although higher-level metrics (e.g., total time) do not capture a
difference, we observe that participants use different scanning be-
havior patterns and attention distributions while reviewing code.
Our participants spent more visual effort evaluating the class
and its methods relevant to the bug while working on human-
labeled patches in a statistically significant manner (Wilcox test:
W =154, p < 0.05). In contrast, they spent more effort on unit-test
class and its relevant unit tests for machine-labeled patches. As
discussed in Section 4.1, our participants ranked human-labeled
patches as of lower quality with regards to the implemented func-
tionality. This may partially explain why they spent more time
evaluating the code of the patch for human-labeled ones compared
to the machine ones. Analyzing unit tests is a standard approach
for assessing the correctness of the patches. In the APR domain,
unit tests play an even important role, as many APR-produced
patches overfit to available test cases [19, 21]. Our participants
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Table 3: Description of the patches, including a short summary of the reported bug along with impacted code elements.

Scope of the solution

ID Simplified Description Classes Methods Test Classes Unit Tests
B1  Max-y value is not updated when copying a subset of TimeSeries. 1 1 1 1
B2  XYSeries.addOrUpdate() should add if duplicates are allowed. 1 1 1 1
B3  Potential Null Pointer Exception in  AbstractCategoryltemRen- 1 1 1 1
der.getLegendItems()
B4 If the label generator returns null, the PieChart must be created. 1 1 1 1
B5  After adding or removing items to the plots, the cached bounds must reset. 1 4 1 1
B6  We have a null pointer exception in StatisticalBarRenderer when one of a series 1 1 1 4

in a category has no data.

Table 4: Pair-wise comparisons of performance metric using
Chi-squared test for accuracy and acceptance rate and non-
parametric Wilcoxon Test (¢ = 0.05) for time and visual ef-
fort metrics. Significant results (p < 0.05) are bolded. We find
no impact of the patch’s provenance on participants’ perfor-
mance and acceptance rate.

Mean (Std. Dev.)

Machine Human p
Acceptance rate 0.60 052 0.7
Accuracy 0.65 0.6 1

Time spent (s)

Avg Fix. duration (ms)
Fix. count

Avg sacc. length (px)

348.2 (177.6) 350.2 (141.4) 0.7
254.0 (82.9) 2317 (83.6) 0.3
352.8 (224.0) 3389 (238.1) 0.8
101.6 (13.6)  103.5(15.3) 0.6

AOI Category
BugReport
RelevantCodeClass
RelevantCodeMethod
B retevantrestciass
B reievantrestitethoa

Distribution of Fixation time

- -

!
human machine

Provenance

Figure 2: Distribution of fixation times across AOIs for hu-
man vs. machine patch labels, averaged for all participants.
Participants put more attention on reading and processing
the relevant class and method for human-labelled patches,
but more time analyzing unit-test class and the relevant unit
test for machine labels.

ranked machine-labeled code as less readable, and such a bias may
prioritize inspection of tests instead. Either the desire to understand
APR patch correctness or the relative perceived readability of the
code may partially explain why participants spent more time on
tests for machine-labeled patches.

5 THREATS TO VALIDITY

Several factors potentially affect the validity of our study. We use
only one system, so its quality and complexity might influence the
study. We mitigate this risk by choosing an open-source project,
written in a popular programming language, and it is a reasonably
large and complex project by general software engineering stan-
dards. Similarly, we select historic bugs from the project repository,
so they are indicative of the real-world issues being reported.

We minimize the interaction between our team and participants
to mitigate biases related to learning or using individual partic-
ipants’ identities. We did not inform the participants about the
study’s precise goals to alleviate hypothesis guessing and appre-
hension. We recruited a small number of participants, so we cannot
consider the population large enough to generalize. Also, the ma-
jority of our participants are undergraduates. Yet, as evaluating the
impact of expertise is not the goal of this study, using students as
participants may be acceptable [18]. Finally, to account for conclu-
sion validity, we choose well-documented eye-tracking metrics and
analyses [34, 35].

6 CONCLUSION

We assess the perception of trust and the potential biases that
developers may have toward automated tools in code review.

Participant self-reports show a bias against machines concern-
ing code readability. Our participants also ranked machine-labeled
patches as higher quality and reported higher trust in them for
critical tasks. However, our empirical results no high-level perfor-
mance differences between machine- and human-labeled patches.
Also, we also find no biases against or in favor of automation while
comparing the acceptance rate.

We find that the provenance influence the code review behavior
of participants. Our attention distribution analysis reveals that
the importance of different areas in the code changes based on
perceived authorship. Our study sheds some light on developers’
perception of trust and its impact on their behavior. It opens doors
for further investigations that benefit various topics, including
automated program repair and code reuse.
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