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Toward an Objective Measure of Developers’
Cognitive Activities
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Understanding how developers carry out different computer science activities with objective measures can

help to improve productivity and guide the use and development of supporting tools in software engineering.

In this article, we present two controlled experiments involving 112 students to explore multiple computing

activities (code comprehension, code review, and data structure manipulations) using three different objective

measures including neuroimaging (functional near-infrared spectroscopy (fNIRS) and functional magnetic

resonance imaging (fMRI)) and eye tracking. By examining code review and prose review using fMRI, we

find that the neural representations of programming languages vs. natural languages are distinct. We can

classify which task a participant is undertaking based solely on brain activity, and those task distinctions are

modulated by expertise. We leverage insights from the psychological notion of spatial ability to decode the

neural representations of several fundamental data structures and their manipulations using fMRI, fNIRS, and

eye tracking. We examine list, array, tree, and mental rotation tasks and find that data structure and spatial

operations use the same focal regions of the brain but to different degrees: they are related but distinct neural

tasks. We demonstrate best practices and describe the implication and tradeoffs between fMRI, fNIRS, eye

tracking, and self-reporting for software engineering research.
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1 INTRODUCTION

Understanding how humans carry out computer science activities improve software engineering
productivity. There is significant interest in such increases, with some Fortune 500 companies
retraining up to half of their workforces in programming-intensive areas [23, 31]. Despite this
growing demand, research often rests on methods such as self-reporting (e.g., think-aloud pro-
tocols, questionnaires, surveys, and interviews) to study software engineering tasks [6, 19, 115].
Although these methods contribute important evidence and advance the state of the art, they suffer
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from the Hawthorn (observer) effect [45, 49] and may not be reliable [36, 54, 71, 126]. To comple-
ment and enhance data collected using such traditional methods, we favor biological objective
measures to provide insights into the cognitive processes that underlie various software engi-
neering activities. While findings related to cognition have guided behavioral and developmental
improvement in domains like mathematics [33] and education [119], we still lack a foundational
understanding of the neural correlates of fundamental computer science activities. From writing
programs to code review to manipulating data structures, we lack an accepted theory explain-
ing, at a level of abstraction useful for practice or pedagogy, what goes on in the brains of people
conducting the many activities collectively called “programming.” Though researchers have high-
lighted the need and importance for such objective measures (e.g., [47]), there is no systematic
solution for this challenge yet.

In this article, we give a combined presentation of two previous controlled human studies [51,
71], involving 112 participants in total and three different evidence modalities, to provide objective
measures of cognitive load in computing activities. We extend our previous work by adding eye-
tracking data acquisition and analyses, as well as an investigation of problem-solving strategies
and cognitive load measured by eye-movement data (visual effort). Investigating visual attention
trends coupled with two methods of measuring brain activity provides novel insights into develop-
ers’ cognitive processes when completing a series of programming tasks. We also present compar-
ative recommendations among eye tracking, neuroimaging, and the implications for reproducible
software engineering research.

Measurements. We use two neuroimaging techniques, functional magnetic resonance imaging

(fMRI) and functional near-infrared spectroscopy (fNIRS), as well as eye tracking, to measure devel-
opers’ cognitive processes.

We use fMRI and fNIRS because both are non-invasive in vivo neuroimaging techniques that
have enabled new and complex studies of brain function [56]. In contrast with conventional re-
search that focuses on one specific cognitive subprocesses (e.g., attention or working memory),
neuroimaging provides a comprehensive view of the activated brain regions involved. By indi-
rectly measuring changes in oxygen consumption [81], these two modalities can both be used to
isolate the brain regions recruited for specific tasks and provide a more objective evaluation of their
associated cognitive load. While fMRI and fNIRS allow us to investigate the physical substrates un-
derlying software engineering tasks, they do not provide any substantial data about participants’
ways of interacting with visual information. Eye-tracking cameras can record significant and sub-
stantial evidence about participants’ visual focus, attention, and interactions, including reading
patterns and visual cues during search [124, 138]. The software engineering research community
has used eye trackers to study various tasks, including the comprehension of source code and soft-
ware artifact representations (e.g., UML class diagrams), source code reading, debugging and bug
fixing, code review and summarization, and software traceability [106, 138]. However, the use of
neuroimaging in software engineering is still exploratory; since 2014, only about a dozen publica-
tions have studied associated cognitive processes with either fMRI or fNIRS alone [24, 41, 48, 51,
74, 104, 116, 142, 143]. Moreover, only a few use eye tracking with either fNIRS [48] or fMRI [116]
to study software engineering due to the high cost and effort of conducting neuroimaging studies
and the lack of proper tool support for simultaneous data capturing and analysis. Our work is the
first to use both fMRI and fNIRS with eye tracking to study software engineering.

Activities Studied. We focus on code comprehension, code review, and data structure manip-
ulation as fundamental activities in software engineering. Studies have shown that developers
spend more time understanding code than any other activity [34, 62, 123, 127]. A NASA survey
ranked understanding as more important than functional correctness when making use of soft-
ware [105]. Similarly, with companies such as Facebook [159] and Google [79] mandating code
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Fig. 1. A representation of the investigated relationship between data structures and spatial ability. On the
left, an unbalanced binary tree is rotated about node 1 to produce the tree on the bottom left. On the right,
a three-dimensional object is rotated in space as shown in the bottom right. We investigate how the brain
represents these two activities using neuroimaging and eye-tracking techniques.

review for new check-ins, code review has taken on practical and research prominence [172]. In
both code comprehension and review, data structures are a fundamental element that affect per-
formance and cost [7, 50, 156, 166]. Data structure choice and usage influence many aspects of
software, including but not limited to maintainability [111], fault tolerance [12], reliability [150],
and scalability [129].

We compare these software engineering tasks to the everyday activities of reading prose and
moving objects in space. These baselines serve as contrasts in our experiments, ground our find-
ings, and admit the potential to inform programming training (see Section 2). Prose reading in-
volves the comprehension of natural language and has long been a preferred point of comparison
for code reading research [21, 142]. Spatial ability encompasses the determination of spatial rela-
tionships between objects and the mental manipulation of spatially presented information, and is
a well-studied subject in psychology. Psychology research has shown spatial ability, often mea-
sured via mental rotation tasks like the one illustrated in Figure 1 [28, 38, 93, 140], to be a major
factor in proficiencies such as mathematics [66, 164], natural sciences [157, 169], engineering [8],
meteorology [17], and map navigation [102]. We design our experiments to be based on contrasts
between programming tasks and two well-studied activities (spatial ability and prose reading) to
ground our results.

Experiments. We present two sequential studies that make different use of various modalities
(e.g., considering their relative costs and explanatory power [48, 51, 142]). We use highly controlled
stimuli and small tasks to support the artificial and isolated environment of fMRI. All stimuli are
static images and are presented for a short fixed time (30 or 60 seconds). Participants could not in-
teract with the computer, navigate or scroll through code and other artifacts, or execute test-cases.
See Krueger et al. for a discussion of the difficulties of typed participant input in fMRI studies [85].

In our first study, we use fMRI alone to understand the relationship between code review, natural
language prose review and code comprehension, as well as the role of programming expertise
(we refer to this study as the Code Study). Thirty-six students are presented with three types of
stimuli, each with an associated judgment task. In a code comprehension task, participants are
shown a snippet of code and asked an associated software maintenance question [144]. In a code
review task, participants are shown an image of a GitHub pull request (i.e., code, a patch to that
code, and a comment) and asked whether they would accept it or not. In a prose review task,
participants are shown English writing with simple editing markup and asked whether to accept
the changes or not. This study admits the investigation of the neural similarities between prose
and code comprehension and review.
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Subsequently, we present the results of a second study using both fMRI and fNIRS as well as
physical eye tracking (captured simultaneously during the fMRI session) to investigate the neural
representations of several classes of data structures and their manipulation (see Figure 4; we refer
to this study as the Data Structure Study). Seventy-six students mentally manipulated lists, arrays,
and trees. Participants also completed a spatial manipulation task from psychology (i.e., to deter-
mine if two perspective drawings portray the same three-dimensional shapes). This study admits
the investigation of the neural similarities between reasoning about real-world objects in space
and reasoning about abstract data structures.

We leverage two key insights to conduct these studies. First, we use different modalities (fMRI,
fNIRS, and eye tracking) to provide objective measurements and establish a grounded understand-
ing of mental processes associated with a series of programming tasks. By comparing and com-
bining these modalities and discussing the implications, we inform best practices for cognitive
research of software engineering. Second, we design our experiments to measure contrasts be-
tween programming tasks and activities from other domains that are already well-studied (i.e.,
spatial ability, prose reading) to ground our results. Through such experimental controls, we iso-
late one feature between tasks and observe the corresponding differences in brain activation or
visual attention trend.

Summary. Empirically, we find that the neural representations of programming and natural
languages are distinct. Our classifiers can distinguish between these tasks based solely on brain
activity. We find that the same set of brain locations is relevant to distinguishing all three tasks.
Finally, we find that expertise matters: greater skill accompanies a less-differentiated neural rep-
resentation. Our results demonstrate that data structure and spatial ability operations are related:
both fMRI and fNIRS evidence demonstrates that they involve activation to the same brain re-
gions (e.g., Section 5.3). However, the similarity relationship is nuanced: spatial ability operations
and tree operations admit a significant contrast and are characterized by differentiated activation
magnitudes (e.g., Section 5.3). Further, some regions relevant to data structures are not accessible
to fNIRS: fNIRS lacked the penetrating power to uncover the full evidence reported by fMRI (Sec-
tion 6.1) and was unable to distinguish between two distinct tasks. We also found that difficulty
matters for data structure tasks: more complicated stimuli result in greater neural activation and
different visual attention trends: an increase in cognitive load (Section 5.4). Our eye-tracking data
analysis shows that participants use a more active scanning pattern and more exploration for List
and Tree stimuli than mental rotation ones. While a neural relationship between spatial ability and
data structure manipulation may seem clear in retrospect, it was not obvious to our participants,
70% of whom reported no subjective experience of similarity (Section 6.2).

Both the code and prose comprehension experiment [51] and the data structure manipulation
experiment [71] were previously published separately. The unified two-stage data analysis pre-
sentation (Section 4), eye-tracking data acquisition and analyses (Sections 3.2 and 4.2), the results
of cognitive load (visual effort) measured by eye-movement data (Section 5.4), problem-solving
strategy results (Section 5.5), comparative recommendations between eye tracking, neuroimaging
(Section 6.1), and the implications for reproducible research from the three modalities’ perspective
(Section 6.3) are presented for the first time in this article. We also significantly restructured the
formal development for a software engineering journal audience, moving certain technical details
most relevant for reproduction to an appendix.

2 BACKGROUND AND MOTIVATION

We first summarize results and techniques related to psycho-physiological measures for a com-
puter science audience in Section 2.1. Second, we review the software engineering tasks involved
in this study, including code comprehension and code review (Section 2.2.1), while summarizing
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the study of mental rotation in psychology, supporting our experimental use of it as a neurological
basis for spatial ability (Section 2.2.3).

2.1 Psycho-Physiological Measures

In this subsection, we overview the mechanism and research use of fMRI, fNIRS, and eye tracking,
including their relative advantages and disadvantages for our experiments.

2.1.1 Neuroimaging. Functional neuroimaging techniques are used to study brain activity. Over
the past 30 years, non-invasive in vivo functional neuroimaging techniques have emerged as im-
portant tools in understanding cognitive processes. The most popular of these techniques, fMRI,
and its counterpart, fNIRS, provide several advantages.

First, as non-invasive tools, fMRI and fNIRS pose significantly less risk and can access a wider
range of brain regions than previous invasive techniques (e.g., electrocorticography). Second, fMRI
and fNIRS provide a wider field of view and higher spatial resolution than other functional neu-
roimaging techniques (e.g., EEG, MEG), allowing for the characterization of a brain region’s contri-
bution to a specific task. Third, fMRI and fNIRS avoid the use of ionizing radiation or radioactive
elements that is common in many other neuroimaging modalities (e.g., CT, PET). Instead, fMRI
and fNIRS rely on the hemodynamic response, the metabolic changes (e.g., oxygen, glucose) in neu-
ronal blood flow to active brain regions, using oxygen consumption as an indirect measurement
for brain region activity [22].

As a result, fMRI and fNIRS are popular in research. In 2010 alone, fMRI was used in more than
1,500 published articles [145]. Among other examples, fMRI has been used to study face recogni-
tion, decision making, resting, and vegetative states [94, 103, 108, 145, 146, 163]. Similarly, the use
of fNIRS is also on the rise [18]. The applications of fNIRS span many fields such as behavioral
development, psychiatric conditions, and brain injury [18, 42, 95, 107].

However, fMRI and fNIRS rely on the hemodynamic response, and share several limitations.
One limitation arises from hemodynamic lag: the onset of changes in neuronal blood flow peaks
several seconds after the onset of stimuli [1, 67]. Similarly, the hemodynamic response saturates
over time [92], resulting in weaker signals for tasks involving sustained activity. The hemodynamic
response enforces experimental restrictions such as lower and upper limits on stimuli (commonly
30 seconds), as well as demanding robust mathematical analysis [16, 134].

How fMRI Works. fMRI provides indirect measurements of brain activity through calcula-
tions of the blood-oxygen level dependent (BOLD) signal, defined as the ratio of oxygenated to
deoxygenated hemoglobin [109]. fMRI measures BOLD signals via the application and removal of
a series of magnetic fields. The energy that nuclei emit upon returning to their original positions
can be used to determine their locations. As task-related brain activity is mapped onto an anatom-
ical scan of the participant’s brain in the associated mathematical analysis, participants must lie
still in the narrow fMRI machine throughout the experiment with minimal head movement.

How fNIRS Works. fNIRS also measures the hemodynamic response to determine active brain
regions. fNIRS relies on differences in the absorption of chromophores, groups of atoms that gen-
erate color through the absorption of light, between oxygenated and deoxygenated hemoglobin.
Light is emitted and detected through devices placed at specific locations on a scalp cap worn by
the participant. Unlike fMRI, fNIRS measures concentration changes in oxygenated and deoxy-
genated hemoglobin separately. fNIRS admits relative freedom of motion and has few environ-
mental restrictions. For example, participants can sit in front of a standard computer and monitor
and perform in a more realistic software development setting.

Comparison of fMRI and fNIRS. Both fMRI and fNIRS have been widely used in psycholog-
ical and clinical research to develop a deeper understanding of brain functions such as sensory,
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verbal, and motor processing [3, 55, 91, 110, 118, 149]. fMRI provides excellent spatial resolution
and deep penetrating power. It is a precise neuroimaging modality that captures activations across
the whole brain. In contrast, fNIRS provides inferior spatial resolution and depth compared to fMRI
due to inconsistent photon paths and the limited penetration of near-infrared light. As a result,
fNIRS also provides a noisier signal, leading to more careful considerations in experiment and
analysis design. Likewise, fNIRS places a burden on the researcher to decide, in advance, on the
placement of light emitter-detector devices. Given finite placement space on the scalp, the num-
ber of regions fNIRS can measure simultaneously is limited. However, fNIRS is gaining traction
as a neuroimaging technique due to its portability, ease of administration, ecological validity, and
lower cost. In contrast, the high cost, restrictive environment, and high sensitivity to participant
motion of fMRI limit its practicality. In this article, we present recommendations for the use of
fMRI and fNIRS to study software engineering.

2.1.2 Eye Tracking. Modern eye trackers are non-invasive, versatile, easy-to-use devices that
have been used to study diverse topics, such as surgery [68], driver-vehicle interfaces [173],
human-computer interactions [121], gaming [9, 151], and software engineering [106, 138]. Eye
trackers are designed to collect a participant’s visuo-spatial attention by recording eye-movement
data [124]. Visual attention triggers the mental processes required for comprehending and solv-
ing a given task, while cognitive processes guide the visual attention to specific locations.
Thus, eye tracking provides useful information to study the participant’s cognitive processes
and effort while performing tasks [59]. Compared to the conventional self-reporting methods,
eye trackers are a cost-effective way of collecting data at a fine level of details with minimal
intrusion.

An eye tracker also provides information that is not available from conventional methods, in-
cluding fine-grained patterns of visual attention (visual attention trends) [15, 78]. A visual attention

trend encapsulates changes in participant’s visual attention over time.
How Eye Tracking Works. Modern, non-intrusive eye trackers consist of two miniature cam-

eras and one infra-red light source. They measure and track the human eye’s focus point using the
“corneal-reflection/pupil-center” method [59, 75]. The invisible infra-red light is directed into the
participant’s eyes. After entering the retina, a large proportion of the emitted light is reflected back
and creates a strong reflection which causes the pupils to appear very bright. A corneal reflection
is also generated and shown as a sharp glint over the iris. Cameras then record the center of the
pupil and location of the corneal reflection while image processing identifies and tracks the eyes.
Raw data recorded by an eye tracker is processed by an event detection algorithm and results in
eye gaze data. Eye gaze data is studied with respect to certain areas of interest (AOIs) in a stimulus.
AOIs are manually defined by the experimenter based on research questions and variables [58, 78,
121, 137].

Eye gaze data is typically divided into two categories [124] based on ocular behavior. A fixation

is a spatially stable eye gaze that lasts for approximately 200–300 ms (on average, three eye fixa-
tions happen per second during active looking). During a fixation, visual attention is focused on a
specific area of display. Researchers in psychology claim that most of the information acquisition
and processing occur during fixations [78, 121] and that a small set of fixations suffices for the
human brain to acquire and process a complex visual input [58, 78, 124]. Fixation data has been
extensively used to measure the visual effort (cognitive load) representing the tasks and stimuli
being assessed [121, 136, 137]. Longer fixation duration and higher number of fixations indicate
higher visual effort [121, 136]. A saccade is a continuous and rapid eye-gaze movement that oc-
curs between fixations. Saccadic eye movements are extremely rapid (within 40–50 ms). Cognitive
processing during saccades is very limited [78, 124].
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2.2 Software Engineering Tasks

In this subsection, we present some relevant background on the software engineering tasks con-
sidered, as well as results related to expertise and imaging.

2.2.1 Code Review. Static program analysis methods aim to find defects (or other critical infor-
mation) in software and often focus on discovering those defects early in the code’s lifecyle. Code
review is one of the most common forms of static analysis today [148]; well-known companies
such as Microsoft, Facebook, and Google employ code review regularly [79, 159]. At its core, code
review is the process of developers reviewing and evaluating source code content and changes.
Typically, the reviewers are someone other than the author of the code under inspection. Code
review is often employed before newly written code can be committed to a larger code base. Re-
viewers may check for style and maintainability deficiencies as well as defects. Numerous studies
have affirmed that code review is one of the most effective quality assurance techniques in soft-
ware development [4, 39, 46, 72]. While it is a relatively expensive practice due to high developer
input, it successfully identifies defects early in the development process. This benefit is valuable
because the cost to fix a defect generally increases with the time it goes unnoticed [165, 167, 171].

2.2.2 Code Comprehension. Much research, both recent and established, has argued that read-
ing and comprehending code play a large role in software maintenance [63]. A well-known exam-
ple is Knuth, who viewed this as essential to his notion of Literate Programming [84]. He argued
that a readable program is “more robust, more portable, [and] more easily maintained.”

Knight and Myers argued that a source-level check for readability improves portability, main-
tainability, and reusability and should thus be a first-class phase of software inspection [83]. Basili
et al. showed that inspections guided by reading techniques are better at revealing defects [141].
An entire development phase aimed at improving readability was proposed by Elshoff and Mar-
cotty, who observed that many commercial programs were unnecessarily difficult to read [44]. A
2012 survey of over 50 managers at Microsoft found that 90% of responders desire “understand-
ability of code” as a software analytic feature, placing it among the top three in their survey [20,
Fig. 4].

2.2.3 Data Structure Manipulation. To date, one previous line of research has considered data
structures at a cognitive level. In a qualitative study involving nine computer science majors, Aha-
roni investigated student thought processes when dealing with data structures [5, 6]. Aharoni
found that visual representations influenced students’ perceptions of the overall properties of data
structures, suggesting that programmers use visual representations to reduce levels of abstraction.
While we draw inspiration from Aharoni’s investigation of data structure mental manipulations,
rather than focusing on qualitative self-reporting, our studies use objective measurements of as-
sociated visual and neural representations.

Mental rotation is defined as the capacity to quickly and accurately rotate two- or three-
dimensional figures in imagination [38]. Mental rotation tasks generally involve comparing two
three-dimensional objects rotated about an axis (Figure 1, right), and are a standard paradigm for
testing spatial ability [28]. Neuroimaging has provided evidence that mental rotation involves the
right parietal lobe, a region believed to be responsible for spatial ability [27, 30, 65]. In our ex-
periments, we use mental rotation as a validated test case for spatial ability. Shepard and Metzler
found that the time required to solve mental rotation tasks is a linearly increasing function of the
angular difference between the orientations of the two objects [140]. Gogos et al. studied the dif-
ficulty of mental rotation using fMRI to identify rises in the BOLD signal with increased angles of
rotation [57]. Mental rotation is a meaningful comparison for the investigation of difficulty in our
studies.
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Table 1. Demographic Data of Eligible Participants

Code Study (n = 29) Data Structure Study (n = 70)
Demographics fMRI fMRI (Eye Tracking) fNIRS
Gender Men 18 16 (16) 30

Women 11 14 (10) 10
Degree Pursuing Undergraduate 27 23 (21) 31

Graduate 2 7 (7) 9

For the Data Structure Study, we capture eye-tracking data simultaneously during the fMRI session.

3 EXPERIMENT SETUP AND METHOD

In this section, we describe our experimental protocol for the two studies. Materials (e.g., all stimuli
and de-identified data) are available at the project’s website.1 Detailed technical specifications of
the fMRI and fNIRS acquisitions are available in our previous publications [51, 71].

3.1 Recruitment

We recruited students for both studies. Solicitations were made via fliers in engineering buildings
and brief presentations in two upper-level undergraduate CS classes. All participants were right-
handed native English speakers and had normal or corrected-to-normal vision. They were also
screened for basic experience in the programming language of interest. Prior to an experiment,
each individual provided written informed consent for a protocol approved by the Institutional
Review Board. Monetary compensation and course extra credit were offered. Table 1 summarizes
the demographic information for all participants. We performed standard filtering including the
exclusion of pregnant women, people with metal implants, head tattoos, and the left-handed (be-
cause the location of language processing in the brain strongly depends on handedness) for fMRI
and participants with dark, thick hair for fNIRS. Also, data from six individuals were removed
from the present analyses, either due to technical difficulties at the imaging center (yielding an
incomplete dataset) or excessive head motion during the fMRI task. The final pool contained mea-
surements from 29 participants using fMRI for the Code Study (35 recruited), 30 participants using
fMRI and eye tracking (36 recruited), and 40 participants using fNIRS for the Data Structure Study

(40 recruited).

3.2 Data Collection

Each full experimental protocol was completed over a single session per participant. Upon ar-
riving, participants provided informed consent and completed a background questionnaire. After
watching a training video, they were prepared for scanning and began the task activities. Follow-
ing an initial anatomical scan, participants completed the tasks. They were encouraged to respond
as quickly and accurately as possible within the time allotted for each trial—neural responses were
considered from the start of the trial until a decision was made. Inter-stimulus intervals ranged
from 2 to 8 seconds and consisted of a fixation cross displayed in the center of the screen. After
completing the tasks, participants were given a chance to review some of the tasks outside of the
scanner and offer verbal explanations for their responses.

For the Code Study, participants completed four 11-minute blocks of the code/prose tasks. In
each run, stimuli were presented in alternating blocks of Code Review, Code Comprehension, and
Prose Review; the blocks were ordered quasi-randomly across runs. All stimuli were presented for

1https://web.eecs.umich.edu/∼weimerw/fmri.html.
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Fig. 2. (a) fMRI machine used in the Data Structure Study. The participant lies flat in the center of the bore.
(b) The fNIRS cap on the head of a participant providing coverage of Brodmann areas 6–9, 17–19, 21, 39, 40,
41, and 44–47 is shown on the left. (c) A participant is shown completing the tasks in the fNIRS experimental
environment.

a fixed time (30 s for prose, 60 s for code) and required an Accept or Reject response, made on an
MR-compatible button box held in the right hand.

For the Data Structure Study, participants completed three 17-minute blocks of tasks. Stimuli
used in the tasks were subdivided into three categories: (1) lists and arrays (collectively referred to
as “sequences”), (2) trees, and (3) mental rotation. Each task block consisted of 10 stimuli from each
category (30 stimuli in each block, 90 stimuli in total). The stimuli order was chosen randomly per
participant. All stimuli were presented for up to 30 s and required an A or B response. All fMRI,
fNIRS, and eye-tracking experiments used the same set of 90 stimuli.

fMRI Acquisition. All fMRI data were collected on a 3T MRI system using a 32-channel head
coil following best practices from neuroimaging [56, 158]. Participants lay in an fMRI machine
holding MR-compatible buttons and remained in the machine for the entire scan (see Figure 2(a)).
The stimuli were presented as images on a screen in the back of the scanner. Stimuli were presented
via a mirror that was placed above the head coil [25] with an approximately average distance of 4
inches between the mirror and the head of a participant.

fNIRS Acquisition. The fNIRS data were collected using a TechEn Inc. CW6 system with an
above-average number of light detection channels, allowing for a broader view of the brain activ-
ities than many published fNIRS studies (cf. [74, 104]). The stimuli were presented as images on
a computer monitor next to the fNIRS device (Figure 2(c)). The fNIRS participants sat in a chair
wearing an fNIRS cap using a standard keyboard and monitor. The cap included 16 light emitters
and 32 detectors, spaced 3 cm apart, yielding 61 data collection channels.

Eye-Tracking Acquisition. The eye-tracking data were collected using an MRI-compatible
Avotec RE-5701 eye tracker by remotely monitoring and tracking participants’ eye-gaze data dur-
ing the fMRI session. The Avotec RE-5701 eye tracker generates 60 raw samples per second (i.e.,
sampling frequency of 60 Hz) and can be adjusted to view either of the participant’s eyes. The
viewing mirror and infrared illumination are mounted on the head coil, while the camera is lo-
cated outside the bore. Using a slide projector, the galvanometer-driven mirror reflected the picture
of a computer screen with a resolution of 1,920 × 1,080 and a font size of 24 pixels in height on top
of the head coil. Participants viewed the stimuli via a mirror while supine. The eye tracker was
installed at the head end of the scanner and received the images of the eyes via the second mirror.
We calibrated the eye tracker for every participant before collecting data for each task.

As soon as fMRI acquisition begins, the eye tracker automatically starts capturing eye-gaze
recordings. However, the eye tracker and fMRI software often run on two different machines,
which makes synchronizing the stimulus presentation and fMRI timestamps with eye gaze record-
ing a slight technical challenge. We created custom scripts to embed markers in the recorded data
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Fig. 3. Task stimuli of Code Study. Code comprehension stimuli feature true and false claims in the style of
Sillito et al. [144]. These stimuli include the code difference (in color and with symbols) as well as the Git
pull request message. Prose review stimuli are English paragraphs with proposed changes presented in a
Microsoft Word “track changes” style.

streams. To handle our factorial experiment design consisting of three different blocks (Mental,
Tree, and List) of randomized stimuli, we marked the start time of the first and each subsequent
stimuli as well as information about block switching.

3.3 Materials and Experimental Design

3.3.1 Study 1: Code Study. In a controlled experiment involving 29 participants, we examine
code comprehension, code review, and prose review using fMRI. Stimulus selection and design
were informed by the experimental need to, in general, admit task completion within the time
available.

Stimulus Type 1: Code Comprehension. A code comprehension stimulus consists of a snip-
pet of code and a candidate assertion about it (Figure 3(a)). Judging whether the assertion is true
or not about the code requires comprehending the code. For comparability with previous research,
we used the same code snippets as Fry et al. [54]. Some samples were reduced slightly in size to fit
the fMRI projection screen and colors were inverted for readability. The candidate questions were
also taken from Fry et al., and thus ultimately adapted from Sillito et al.’s study of questions asked
by actual programmers during software evolution tasks [144]. For each snippet an appropriate
question type was selected at random. Assertions were induced from questions by including the
correct answer or an incorrect answer (random coin flip). Assertions were used because the fMRI
installation only allowed yes-or-no answers.

Stimulus Type 2: Code Review. A code review stimulus consists of an historical GitHub pull
request, including the code difference and the developer comment (Figure 3(b)). Participants are
asked to review the change and indicate whether they would accept it or not. A pool of candidate
pull requests was selected by considering the top 100 C repositories on GitHub as of March 2016
and obtaining the 1,000 most recent pull requests from each. We considered the pull requests in a
random order and filtered to consider only those with at most two edited files and at most 10 mod-
ified lines, as well as those with non-empty developer comments; the first 20 valid requests were
used. Code was presented using the GitHub pull request web interface, simplified, and inverted
for readability.

Stimulus Type 3: Prose Review. A prose review stimulus consists of a snippet of English writ-
ing marked up with candidate edits (Figure 3(c)). Participants are asked to review the changes and
indicate whether they would accept them or not. We included two sources of English writing. First,
we selected random chapters from an English writing textbook [40] that provides explicit correct
and incorrect versions of candidate sentences and created examples based on grammar rules con-
tained in those chapters. We created 20 stimuli of this type. Second, we selected random exercises
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Fig. 4. Example task stimuli for our Data Structure Study, reduced for presentation space. Sequence and Tree
stimuli examples shown are simplified for clarity.

in “Paragraph Improvement” from the College Board’s SAT study guide [155] (recall that all par-
ticipants were native English speakers). Each such exercise has a paragraph and a set of questions
on how to improve various parts of it; we created 10 stimuli by applying or reversing all changes.

3.3.2 Study 2: Data Structure Study. In this human study, we recruited 36 participants for fMRI
and eye-tracking measurements and 40 participants for fNIRS measurements. We used 90 stimuli
consisting of data structure (i.e., list, array, tree) and mental rotation tasks with varying levels of
difficulty.

Stimulus Type 1: Data Structure. Each stimulus from the data structure category included a
starting data structure, an operation to perform, and two answer choices (Figure 4). Answers were
either numerical values to describe the outcome of an operation or candidate data structures re-
sulting from an operation. A sequence task appeared as either a linked list or an array. For simplicity
of modeling, we defined the difficulty of a sequence or tree task to be the total number of elements
present—the N in Big-Oh notation. The sequence tasks include merge, insert, and swap operations.
The tree tasks include binary search tree (BST) rotation, insertion, and traversal operations.

Stimulus Type 2: Mental Rotation. Each stimulus from the mental rotation category included
a starting three-dimensional object and two candidate objects. Participants chose the candidate
that could result from a rigid rotation of the original (Figure 4(c)). The mental rotation stimuli
were adapted from the Mental Rotation Stimulus Library established by Peters and Battista [117]
with rotational angle difficulty. Figure 4 shows simplified examples.

4 DATA ANALYSIS APPROACH

In this section, we present the mathematical analyses applied to fMRI, fNIRS, and eye-tracking
data. Where applicable, we applied a false discovery rate (FDR) threshold at q < 0.05 to control for
false positives as a result of multiple comparisons.

Notation. We use the neuroimaging notation A > B to refer to the contrast (or difference)
between two tasks. For example, Sequence > Tree refers to the comparison of brain activa-
tions during sequence vs. tree manipulation. Contrasts are directional tests: the aforementioned
Sequence > Tree contrast will specifically attempt to identify regions in which average sequence
task activity is greater than tree manipulation. Critically, this does not imply that the inverse con-
trast (Tree > Sequence) will reveal regions in which tree activity is significantly greater than se-
quence activity, as differences in the opposite direction may be too small to be statistically mean-
ingful (particularly conservative thresholds were used to guard against false positives).

4.1 Neuroimaging Analysis Approach

Our goal is to localize brain activation from task-related changes in the BOLD response (fMRI) or
light absorption (fNIRS). Such analyses pose complicated statistical challenges, involving the in-
terpretation of hemodynamic responses across anatomically and functionally diverse participants,
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which themselves are indirect metabolic proxies for underlying neuronal (i.e., molecular/cellular)
responses. We used standard preprocessing techniques to identify and remove artifacts, validate
model assumptions, and standardize locations of brain regions across participants. We used gen-
eral linear models to obtain estimates of task-related brain activations within voxels (fMRI) or
channels (fNIRS) based on the canonical hemodynamic response function. More specifically, we
performed “multivariate pattern analyses” using Gaussian Process Classification (GPC) to deter-
mine the extent to which code and prose tasks elicited similar patterns of brain activity. For display
purposes, we generate “posterior importance” maps. Each map contains a set of views of the brains
including axial2 and lateral3 views. We divided the brain into 90 regions of the cerebrum, defined
by the Automated Anatomical Labeling (AAL) atlas [161] and determine the total contribution
(sum of absolute weights) of all voxels in each region, relative to every other part of the brain
(cf. Section A.3). Finally, we performed statistical tests at both individual and group levels to test
for significant brain activations, including subsequent correction for false positives. Appendix A
provides a detailed summary of the mathematical analyses applied to fMRI and fNIRS.

4.2 Eye-Tracking Analysis Approach

Our eye-tracking analysis involves fixation detection, preprocessing, and the identification of areas
of interest.

Fixation Detection. We use Ogama4 to analyze eye-movement data. Ogama employs a
dispersion-type algorithm with a moving window to detect fixations [128].

Preprocessing. The first step in preprocessing the eye-gaze data is to remove outliers and iden-
tify and fix drifts (offsets). Drift is the gradual decrease in time of the accuracy of data, when
compared to the true coordinates of the eye movements. Drift happens when a participant moves
beyond the capability of an eye tracker to follow or as a result of the deterioration of calibration
over time. We use Ogama to manually detect drift by reviewing the captured video of eye move-
ments and replaying the fixations and saccades. In our stimuli, questions are placed at the top of
the screen, admitting a high-confidence mapping between the first fixation and the top question
line on the screen. If the drift is visible to the researcher and is homogeneous (i.e., at any given
time point, it is the same for all fixations), then we correct it by shifting all the fixations uniformly.
When this is not possible, we exclude the incriminating stimulus and its captured data from the
analysis. For about 10 participants, we corrected the drift on approximately 20% of the stimuli us-
ing this process. We also removed the gaze data of four (out of 30) participants from the analysis
as around 80% of their stimuli were subjected to uncorrectable drift (i.e., either very few fixations
or some located at the bottom of the page).

AOI and Metrics. We use Goldberg and Helfman’s guidelines [58] for defining AOIs in terms of
size and granularity. We manually divide every stimulus into four AOIs: Question, Graph, Correct,
and Wrong. Figure 5 shows examples of AOI partitioning for Tree, List, and Mental tasks. The sizes
of these areas are roughly the same across all stimuli of the same task. Yet, different AOIs may
have different sizes across tasks. Deitelhoff et al. analyzed the impact of AOI sizes and paddings
on code comprehension and reported that it can influence results [35]. Thus, we do not directly
compare fixation data over two AOIs from different tasks (e.g., a Graph AOI in a Tree stimulus
vs. a Graph in a List stimulus). Instead, we look into the distribution of visual attention over the
AOIs while comparing different tasks. The Question AOI contains the question that participants

2An axial plane is parallel to the ground and divides the brain into the top (superior) and bottom (inferior).
3The lateral (sagittal) plane is perpendicular to the ground and goes right through the middle of the brain, dividing it into

left and right halves.
4http://www.ogama.net/.
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Fig. 5. Example AOI divisions for our Data Structure Study, reduced for presentation space.

answered. The Graph AOI represents the original data structure while the Correct and Wrong AOIs
display the question’s correct answer and the distractor option, respectively. We did not include
the Question AOI in the analyses. For all Mental stimuli, we used the same question, while for the
other categories, we used various types of questions.

We use the eye-gaze data to analyze and compare the problem-solving strategies of participants.
A strategy models gaze data and visual attention trends over time throughout a task. We use scan-
path metrics to quantify strategies. A scanpath is a series of fixations or AOIs in chronological
order. Scanpaths are commonly analyzed in eye-tracking studies [58, 77, 138] and are typically
presented in terms of diagrams (e.g., heatmaps) [77]. We compute the number of transitions be-
tween AOIs along with two standard oculomotor metrics as the components of a scanpath. First,
fixation time is the duration of all the fixations on an AOI or the stimulus. Higher fixation time
indicates difficulty in extracting information and an increased strain on the working memory [59,
75]. Second, fixation counts are the total number of fixations and indicate the number of attention
shifts required to complete the task [78]. Counts often correlate highly with the time spent on a
task.

5 RESULTS AND ANALYSIS

We address the following research questions:

RQ1 What is the difference between code review and prose review in terms of brain activity?
RQ2 What is the role of expertise in code review tasks?
RQ3 Do data structure manipulations use spatial ability?
RQ4 What is the role of task difficulty in data structure tasks?
RQ5 Do developers use different problem solving strategies for data structure tasks?

Tablen 2 summarizes the details of research questions and the modalities used. Our Code Study

answers RQ1 and RQ2 while the remaining research questions are answered by the Data Structure

Study. We also analyze the impact of participants’ gender, age, and programming experience (years
of programming) on participants’ performance for the Data Structure Study.

5.1 RQ1: Task Classification and Regional Inference

We assess if we are able to classify which task a participant is performing based solely on patterns
of brain activity using GPC. If code and prose are processed using highly overlapping brain sys-
tems, classifier accuracy would be low, reflecting entangled patterns of activity. For more details
regarding the classification analysis, please refer to Appendix A. We consider the three tasks (Code
Review, Code Comprehension, and Prose Review) pairwise. Median balanced accuracy (BAC) was
compared for each of the three models using nonparametric Wilcoxon rank-sum tests [10]. There
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Table 2. Summary of Research Questions, Modalities Used, and the Analysis Methods
in Presented Studies

Research Question Modality Method

C
o
d

e
S
tu

d
y

RQ1: Task Classification

and Regional Inference
fMRI

Assessing the patterns of brain activity using
Gaussian Process Classification
Decoding the neural representations of code and
prose from multivariate patterns of brain activity

RQ2: Expertise fMRI Performing the correlation analysis between
expertise (measured by GPA) and the accuracy of
the brain activity classifier

D
a

ta
S
tr

u
ct

u
re

S
tu

d
y

RQ3: Involvement of

Spatial Ability

fMRI &

fNIRS

Performing contrast analysis: comparing the
activation pattern of brain regions
Computing pairwise comparison of brain
activities between tasks

RQ4: Task Difficulty
fMRI &
fNIRS

Performing contrast analysis: comparing the
activation pattern of brain regions

Eye tracking Performing correlation analysis of cognitive load
(measured by fixation time) and data structure
size

RQ5: Problem-Solving
Strategies

Eye tracking Performing align-and-rank factorial analysis of
the visual attention distribution across stimuli
regions

Fig. 6. Average weight maps for task classifiers. For both (a) and (b), from right to left, we have an axial
superior view, an axial inferior view, a right lateral view, and a left lateral view. Ant (anterior) represents the
front of the brain while Post (posterior) is the back. L and R indicate the left and right sides of the brain.
When regions of the brain colored “hot” are active, the decision is pushed toward Code. The left and right
subfigures show a high degree of concordance (r = 0.75, p < 0.001), quantifying how both code tasks are
distinguished similarly compared to the prose task.

were no significant differences in classification performance for either Review vs. Prose models
or Comprehension vs. Prose models, suggesting that GPC’s ability to discriminate between code
and prose tasks was not driven by the number of prose trials completed. This also held when con-
sidering only Prose class accuracy in models. Table 3 presents a full set of summary statistics for
classifier performance.

With regard to overall classifier performance, we compared model BAC against a null median
accuracy of 50% (chance for a binary classifier). For all models, GPC performance was highly signif-
icant. These results suggest that Code Review, Code Comprehension, and Prose Review all have
distinct neural representations. Inspection of the average weight maps for each Code vs. Prose
model (Figure 6) revealed a similar distribution of classifier weights across a number of brain
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Table 3. Summary Statistics for Classifier Performance

Class 1 Class 2 Overall

Model Accuracy Z p Accuracy Z p BAC Z p

Review vs. Prose 58.33% 1.85 0.064 87.50% 4.20 2.63E-05 70.83% 4.00 6.34E-05

Comprehension vs. Prose 72.73% 2.74 0.006 95.83% 4.61 3.94E-06 79.17% 4.51 6.38E-06

Review vs. Comprehension 66.67% 3.68 2.32E-04 58.33% 0.90 0.366 61.84% 3.45 5.70E-04

Median accuracies are given across participants per task (Class 1 and Class 2) and all together (Overall). For example,

with Review vs. Prose, Class 1 is Review and Class 2 is Prose; test statistics and probabilities are derived from non-

parametric Wilcox on signed-rank tests.

Fig. 7. Average regional importance maps for task classifiers. For both (a) and (b), from right to left, we
have an axial superior view, an axial inferior view, a right lateral view, and a left lateral view. Ant (anterior)
represents the front of the brain while Post (posterior) is the back. L and R indicate the left and right sides of
the brain. “Hot” colors indicate areas containing a greater proportion of the total classification weight (over
all 90 AAL-defined regions). These proportions are directly interpretable, such that extreme red regions are
twice as “important” as light green regions. The left and right subfigures show a near-perfect correlation
r = 0.99, p < .001: the same brain regions as important for both code tasks in general vs. the prose task.

regions (here, “hot” voxels push the decision function toward Code with greater activation, while
“cool” voxels indicate the reverse). Correlating the voxelwise values confirmed a high degree of
concordance (r = 0.75, p < 0.001), indicating that (on average) similar patterns of activity distin-
guished between code and prose regardless of which code task was being performed.

Moreover, we investigate the relationship between tasks and particular brain regions. We look
at the brain areas most involved in the GPC and examine their traditional roles and importance. As
with the average multivariate weight (“posterior importance”) maps, average regional importance
maps for both Code vs. Prose classifiers demonstrated remarkable overlap (Figure 7). A correlation
between importance maps yielded a near-perfect correspondence: r = 0.99, p < 0.001. For both
classifiers, a wide swath of prefrontal regions known to be involved in higher-order cognition
(executive control, decision-making, language, conflict monitoring, etc.) were highly weighted,
indicating that activity in those areas strongly drove the distinction between code and prose pro-
cessing. We also observed fairly large contributions from voxels near Wernicke’s area in the tem-
poroparietal cortex—a region classically associated with language comprehension. Together, these
results suggest that language-sensitive areas of the brain were differentially recruited when pro-
cessing code vs. prose. Thus, on average, programming and natural languages exhibit unique neu-
ral representations.

We employed a data-driven machine learning approach to decode the neural representations
of code and prose from multivariate patterns of brain activity. Binary Gaussian Process classifiers
significantly predicted when a participant was performing code-related tasks relative to prose
review; it also distinguished between the two code tasks, though to a lesser extent. This latter ob-
servation is consistent with the remarkable spatial overlap, both qualitatively and quantitatively,
between multivariate classifier weights in Code vs. Prose models, suggesting that the code tasks
were largely represented similarly on average. This was confirmed by nearly identical a posteriori
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Fig. 8. Negative relationship between classifier performance (x-axis) and expertise (GPA), shaded 95% con-
fidence interval.

estimates of regional importance: a number of prefrontal regions reliably distinguished between
the code and prose tasks, accounting for most of the weight in the whole-brain classification mod-
els. Importantly, however, the extent to which these tasks were separable depended on one’s ex-
pertise in programming—in the brains of experienced programmers, code and prose were nearly
indistinguishable.

Code Review, Code Comprehension, and Prose Review are largely distinct in their neural repre-
sentation. Activities in brain regions that are related to higher-order cognition, especially lan-
guage comprehension, exhibit fairly large distinctions in prose and code tasks.

5.2 RQ2: Expertise

We examine the relationship between classifier accuracy and participant expertise. In light of the
observed variability in classification performance across individuals, coupled with stark differ-
ences in multivariate weight maps between the highest and lowest performing models (not shown),
we tested whether BAC predicted one’s programming expertise. As a proxy for expertise, we ob-
tained undergraduate GPAs counting only courses from the Computer Science department. These
were corrected by the total number of CS credits taken (a 4.0 GPA with 8 credits presumably does
not indicate equal expertise to a 4.0 GPA with 32 credits): a simple linear regression was spec-
ified predicting computer science GPA from completed credits, and the residualized GPAs were
extracted for subsequent analysis. This allowed us to consider GPA as a skill indicator independent

of the number of credits completed.
We then computed the correlation between expertise and classifier accuracy for both of the

Code vs. Prose models. Discriminability performance in Code Review vs. Prose models was not
related to expertise (r = −0.25, p = 0.184). However, the extent to which classifiers distinguished
between Code Comprehension and Prose significantly predicted expertise (r = −0.44, p = 0.016)
(see Figure 8). The inverse relationship between accuracy and expertise suggests that, as one de-
velops more skill in coding, the neural representations of code and prose are less differentiable.
That is, programming languages are treated more like natural languages with greater expertise.

The neural distinctions between prose and code tasks are mitigated by programmers’ expertise:
in the brains of experienced programmers, code and prose were nearly indistinguishable.
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Fig. 9. “Hotter” colors indicate regions showing a larger magnitude difference between the two tasks.
(a) More activity during mental rotation relative to tree manipulation. (b) More activity during difficult
sequence manipulation trials relative to difficult mental rotation trials.

5.3 RQ3: Involvement of Spatial Ability

We began with a broad examination of mental Mental > Datastructure tasks, independent of task
difficulty: this would allow us to determine whether there were reliable differences between Mental
task and the two data structure tasks on average.

fMRI Results. Given that mental rotation reliably activated several regions commonly associ-
ated with the brain’s “default mode network” (DMN) more than the two code tasks, we applied
more focal contrasts to determine whether there were specific differences between Mental > Tree
and Mental > Sequence. This revealed that the Mental > Code effect was primarily driven by
Mental > Tree (Figure 9(a)). While Mental > Sequence yielded significant differential activations
in midline DMN regions, these clusters had relatively minimal spatial extent. Patterns of activity
related to Mental > Tree, however, were nearly identical to those observed in the comprehen-
sive Mental > Code contrast (Pearson’s r = 0.97,p < 0.001). As with the omnibus Code > Mental
contrast above, the inverse contrasts (Tree > Mental and Sequence > Mental) also had no voxels
survive FDR thresholding.

fMRI results suggest more similarities than differences during mental rotation vs. software en-
gineering tasks. A number of DMN regions involved in mental simulation were recruited more
heavily during mental rotation; nevertheless, 95% of voxels were statistically indistinguishable
between Mental and Tree tasks.

fNIRS Results. We first examined brain activations comparing each task to a rest condition. The
columns Sequence, Mental, and Tree show the Brodmann Areas (BA), a standard classification of
neural locations, that are significantly activated during the task categories (p < 0.01 and q < 0.05).
The t-values range from 8 (much stronger activation) to −8 (much weaker). We observe that the
three categories of tasks all involve significant activations in exactly the same brain regions: BA 6–
9, 17–19, 39 and 46. Table 4 summarizes the fNIRS results. In the frontal lobe, the premotor cortex
and supplementary motor cortex (BA 6), and the frontal eye field (BA 8) showed activation. In the
parietal lobe, the part which is associated with visuomotor coordination presented activation (BA
7) and part of Wernicke’s area showed activation (BA 39). We also observed strong activation in the
primary, secondary, and associative visual cortex (BA 17–19). Finally, regions of the dorsolateral
prefrontal cortex (BA 9, 46) showed activations for all tasks. All the brain areas listed in the table
passed FDR correction (q < 0.05).

Having established a broad similarity in how the three tasks each differ from a rest state, we
narrowed the investigation by examining how the tasks differ from each other. In Table 4, the
column Sequence > Mental shows the brain activation results when comparing sequence tasks
and mental rotation tasks. Areas related to vision (BA 17–19), Wernicke’s area (BA 39), and the
prefrontal cortext (BA 46) showed very different patterns of activation between the data structure
task and mental rotation. In addition, areas related to language processing (BA 41, 44–45, and 47,
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Table 4. Summary of fNIRS Results

Sequence Mental Tree Sequence > Mental Mental > Tree Sequence > Tree
BA t -value range BA t -value range BA t -value range BA t -value range BA t -value range BA t -value range

6 2.5–5.0 6 2.8–4.3 6 3.8–4.6 6 2.7–2.7
7 4.7–5.5 7 5.9–6.4 7 5.1–7.2
8 2.6–5.1 8 2.9–5.5 8 2.5–5.6
9 2.6–5.1 9 5.5–5.5 9 2.7–5.3

17 3.1–4.9 17 3.2–6.2 17 2.6–5.3 17 −2.4–−2.4
18 3.8–5.2 18 5.3–6.9 18 4.2–5.3 18 −2.4–−2.4 18 2.6–2.6
19 4.0–6.6 19 5.3–9.1 19 4.2–7.3 19 −4.3–−3.2 19 2.4–4.3
39 3.7–7.1 39 4.1–7.9 39 4.4–7.9 39 −3.3–−3.3 39 2.4–2.4

41 −2.3–−2.3
44 −3.3–−2.6 44 2.6–3.4
45 −5.0–−2.4 45 3.5–3.5

46 3.8–4.1 46 3.5–4.6 46 4.7–5.6 46 −5.9–−2.4 46 2.7–4.3 46 −2.6–−2.6
47 −5.9–−5.0 47 3.4–4.3

Each column corresponds to a particular task. Each row corresponds to a particular Brodmann Area used during that

task along with the range of t -values measured by all fNIRS channels on that BA. Positive t -values indicate stronger

activation while negative t -values indicate weaker activation. We report all t -values with p < 0.01: all reported results

are significant.

which include Broca’s Area) strongly distinguish the two. As we observe here, an area (e.g., BA
41) may not significantly distinguish Sequence from a rest state or Mental from a rest state, but
may significantly distinguish them from each other.

However, the Mental > Tree and Sequence > Tree distinctions are far less compelling. In a com-
parison, t-values near to either 8 or −8 are relevant. While Sequence > Mental features three areas
that reach a magnitude of 5 or more, the other two contrasts never reach a magnitude of 5 and
involve fewer regions and channels. In an fNIRS analysis [73, 152], contrasts of that strength result
in a conclusion that Mental and Tree, as well as Sequence and Tree, are similar tasks.

fNIRS results demonstrate that mental rotation and data structure tasks involve activations to
the same brain regions. However, while Sequence > Mental may be a compelling contrast, the
fNIRS evidence does not support the claim that the other tasks are distinct.

The fMRI and fNIRS results suggest a nuanced relationship between medical imaging, spatial
ability, and software engineering tasks. Further investigation is warranted. For example, recently,
Krueger et al. studied code writing using fMRI; previous fMRI studies, including those presented
here, had focused on reading or interpreting static stimuli. They found that “while prose writing
entails significant left hemisphere activity [ . . . ], code writing involves more activations of the right
hemisphere, including regions associated with attention control, working memory, planning and
spatial cognition.” Our results suggest that fNIRS may not be suitable for investigations into certain
software engineering tasks (e.g., tree manipulations, code writing) that are currently believed to
involve spatial ability.

5.4 RQ4: Task Difficulty

Mental rotation tasks have a natural notion of difficulty, namely, angle of rotation. Shepard and
Metzler [140] found that the time required to solve mental rotation tasks is a linearly increasing
function of the angular difference between the orientations of the two objects. For Tree and List
tasks, we use the size of the graph as a measure of difficulty.
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Fig. 10. Positive relationship between the size of the tree and the fixation time required to solve the task.
Size category quartiles are 1 (small), 2 (medium), 3 (large), and 4 (very large).

fMRI Results. When we considered the difficulty of each task, we found a significant effect in
Sequence > Mental (Figure 9(b)). Larger sequence tasks elicited stronger activations across a wide
extent of the brain (FDR-corrected). With the exception of PCC, there was little to no overlap with
DMN regions (as seen in the contrasts in Section 5.3). Rather, the largest clusters included bilateral
postcentral gyrus (BA 40), left inferior frontal gyrus (IFG; BA 44–45), bilateral dorsomedial PFC
(dmPFC; BA 6, 8), bilateral anterior insula (BA 13), and bilateral ventral precuneus extending into
visual association cortex (BA 18). The heavy recruitment of frontoparietal regions—particularly
in the left hemisphere—suggests an increase in cognitive load [32] scaling with the total size of
the stimuli. That is, we found that the brain works measurably “harder” for more difficult prob-
lems. Because the relationship between mental rotation difficulty and the BOLD signal is so well-
established in psychology and cognitive neuroscience [57, 140], it is particularly compelling that
we observe a significantly larger effect (in terms of cognitive load and top-down control rising
with more complex stimuli) for sequence data structures in software engineering than for mental
rotation.

fNIRS Results. A similar analysis with our fNIRS data revealed no significant findings for the
effect of task difficulty on neural activity. This is likely due to fNIRS lacking the penetrative depth
and spatial resolution of fMRI.

Eye-Tracking Results. To investigate the impact of task difficulty, we measure participants’
visual effort by calculating the average fixation time spent on all stimuli per participant. Fixation
time is the duration of all the fixations on the stimulus. The amount of fixation time should increase
with the participants’ visual effort.

For the Mental task, our results show that the angle of rotation positively correlates with the
amount of fixation time spent by participants (Kendall’s τ test: ρ = 0.15,p < 0.05). The amount of
participants’ cognitive load to solve the mental rotation task is a linearly increasing function of
the angular difference.

We characterize difficulty in the two categories of data structure tasks using the total number
of elements in the data structure. List sizes ranged from 10 to 21 elements; trees ranged from 8
to 20. We divide data structures into four size quartiles. We find that the amount of visual effort
required to solve tree problems is a significant predictor of difficulty (ordinal logistic regression:
F = 3.7,p = 0.02) as shown in Figure 10. A higher cognitive load is required to work with larger
trees. We find no significant effect of task difficulty on visual effort for the list task.
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Table 5. Pairwise Comparisons of Three Tasks Using Non-Parametric Wilcox Tests (α = 0.05) for Number
of Transitions, Fixation Time, and Fixation Count

Mean (Standard Deviation) List vs. Mental Tree vs. Mental
List Mental Tree p p

Number of Transitions 315 (68) 102 (22) 228 (117) <0.001 <0.001

Fixation Time (s) 1,361 (1,172) 1,413 (1,095) 1,629 (1,162) 0.7 0.07
Fixation Count 40 (23) 19 (17) 34 (21) <0.001 <0.001

Results for each metric are at the right, with significant results (<0.05) bolded.

Fig. 11. Comparison of Fixation Time and Fixation Count between AOIs per task. Longer fixation duration
and higher number of fixations indicate higher visual effort. Participants working on the Tree task, on aver-
age, spent more time and effort on Wrong AOI compared to the Correct AOI.

The brain works measurably harder for more difficult software engineering problems (in terms
of cognitive load). Moreover, the regions activated suggest a greater need for effortful, top-down
cognitive control when completing challenging sequence manipulation tasks. Similarly, larger
tree manipulation tasks required more visual effort.

5.5 RQ5: Problem-Solving Strategies

We use eye-gaze data to analyze and compare the problem-solving strategies of participants. We
analyze eye movements globally over the whole stimuli, as well as locally with respect to AOIs. We
measure fixation counts and fixation time on the entire stimulus. As shown in Table 5, participants
fixated more frequently while working on data structure stimuli, implying a more active scanning
pattern and more exploration compared to Mental stimuli.

We also calculate the metrics mentioned above within each AOI to compare the participants’
pattern of attention switching across the spectrum of AOIs. We observe more transitions between
AOIs for List > Mental and Tree > Mental in a statistically significant manner.

We find that participants have different attention distributions when working on different stim-
uli. We use a general align-and-rank non-parametric factorial analysis [168] and find that there
is a significant interaction between the stimuli categories (F (4, 204) = 3.58, p < 0.001 for fixation
count and F (4, 204) = 6.9, p < 0.001 for fixation time). These results confirm that AOI relevance
varies significantly across three categories. Figure 11 presents a qualitative explanation of par-
ticipants’ attention distribution across AOIs. Participants working on the Tree task, on average,
spent more time and effort on Wrong AOI compared to the Correct AOI. Post-hoc comparisons of
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Fig. 12. Eye-gaze heatmaps for one participant, working on one stimuli of each task. A heatmap is a color
spectrum that represents the intensities of fixations. The colors red, orange, green, and blue indicate the
fixation duration from highest (warmer tone, redder) to lowest. While the participant’s attention is broadly
distributed over the AOIs for Sequence and Mental AOIs, image 12(b) presents long, intense attention on the
Wrong AOI (left-hand side).

Table 6. The Impact of Participants’ Reported Demographic Information on Performance

Mean (SD) p-value

Gender Age Experience Gender Age Experience

Performance Men Women 18-22 23-27 <5 years >5 years

Time (s) 11.7 (6.4) 12.08 (6.2) 12.19 (6.3) 11.29 (6.3) 12.00 (6.3) 11.55 (6.5) 0.12 <0.001 0.1

Accuracy 0.77 (0.41) 0.77 (0.42) 0.76 (0.42) 0.77 (0.41) 0.77 (0.41) 0.76 (0.42) 0.9 0.5 0.6

Avg. Fix. Duration (ms) 191.1 (52.5) 192.3 (51.3) 197.1 (51.5) 190.0 (52) 196.8 (51.1) 189.8 (52.3) 0.3 0.001 0.002

Fixation Count 30.9 (22) 29.8 (22) 39.4 (23.0) 28.2 (21.2) 39.8 (22.7) 27.7 (21.1) 0.15 <0.001 <0.001

Pairwise comparisons of performance using Chi-squared test for accuracy and non-parametric Wilcoxon test (α =

0.05) for time and visual effort (measured by average fixation duration and fixation count). Significant results (p < 0.05)

are bolded.

interaction contrasts using a chi-squared test with Holm adjustment reveal an increased fixation
time for the Wrong AOI compared to the Correct AOI for Tree > List (χ 2

r (1) = 8.3, p < 0.001) and
Tree > Mental (χ 2 (1) = 11.8, p < 0.05). This is consistent with a strategy in which participants
tried to rule out the answers believed to be incorrect (see Figure 12) instead of directly solving the
problem.

Figure 12 displays eye-gaze heatmaps of one participant working on three different stimuli. A
heatmap shows the relative intensity of fixations by assigning each value a color representation.
“Hot (warmer)” colors represent those that are highest in their value, fixated more intensely. “Cold”
colors correspond to lower values. These heatmaps show distinct patterns of problem-solving be-
havior while working on various tasks.

Participants use different problem-solving strategies (different attention distributions and scan-
ning pattern) when working on different data structure tasks.

5.6 Performance Differences

In this article, we extend our previous analysis [71] and investigate the impact of participants’
reported demographic information (gender, age, and the number of programming years) on per-
formance (See Table 6). We measure participant performances on code review tasks in terms of
the amount of visual effort (cognitive) measured by eye-tracking data, the amount of time spent
finishing the task, and the number of correct answers (accuracy). The visual effort is measured by
fixation count, average fixation duration, and average saccade length [78, 111, 121, 137]. Longer
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fixation times and saccades indicate more effort and higher cognitive load. No significant effect of
provenance was found on eye-tracking metrics in isolation [78, 111, 121, 137].

The test of proportion (Chi-squared test for significance) for accuracy shows no difference be-
tween participants regarding gender, age, or experience. However, we observe that age and the
total number of years of programming impact the amount of effort participants put into solving
the tasks. Our analysis shows that experience (number of years of programming) positively corre-
lates with age (Kendall’s τ test: ρ = 0.7,p < 0.001). Older and more experienced participants spent
less time and effort on the tasks.

While there have been several investigations of prejudicial or systemic bias in software engi-
neering, such as Huang et al.’s study of gender biases in code review [70], Terrell et al.’s study of
the acceptance rates of contributions from men vs. women on GitHub [153], or Ford et al.’s study
of gender participation barriers on Stack Overflow [52], our analysis is closer to experiments that
consider gender as a factor in the performance of software engineering tasks [14, 60, 154]. Our re-
sults are in broad agreement with previous work [14, 60, 154] reporting that there is no difference
between men and women participants regarding their performance. In addition, in contrast to pre-
vious work [14, 60, 70, 154], we did not find any gender differences in problem-solving strategies
specifically (i.e., different attention distributions or scanning patterns). While this traditional two-
cluster partitioning of participants (i.e., men vs. women) did not reveal any significant behavioral
differences, future work may be able to shed further light on this by performing nuanced analyses
of individual demographic differences.

6 DISCUSSION

In this section, we discuss the implications of our results and compare various aspects of using
three different biological modalities to study software engineering tasks. Based on our collec-
tive experience with conducting human studies using neuroimaging and eye tracking, we capture
our assessment of the essentials and summarize the suitability of various modalities discussed in
Table 7.

6.1 Neuroimaging and Eye-Tracking Agreement

Our fMRI and fNIRS measurements and analyses both support the claim that mental rotation and
data structure tasks recruit the same brain regions. However, while fMRI evidence supports a very
robust Mental > Tree contrast, the fNIRS evidence is insufficient to support that same claim. This
is sensible when we consider the regions yielding the largest differences in fMRI: they largely
correspond to structures (e.g., the medial prefrontal cortex and posterior cingulate) that fNIRS
cannot measure. Very informally, the parts of the brain that distinguish mental rotation from tree
manipulations are too far “inside the skull” for fNIRS to see: its near-infrared light cannot penetrate
deeply beyond regions near the cortical surface.

However, while fMRI is more spatially resolved, its restrictive and alien environment can also
be more daunting for participants. Previous work also investigated the impact of fMRI isolated
environments and scanner noise on participants’ mood and performance [76, 101]. We compared
participant performance (i.e., whether or not they gave the correct answer and how long it took)
for fMRI and fNIRS; such information was available for 30 fMRI and 40 fNIRS participants. Re-
call that the questions were identical and the participants were drawn from the same pool. The
average accuracy of fNIRS participants, 92%, was significantly higher than the 85% accuracy of
fMRI participants (t = 4.5, p < 0.01) with no significant difference in response time. We also in-
vestigate the impact of problem difficulty on participants’ performance while comparing fMRI
and fNIRS. We characterize difficulty using the total number of working elements (for data struc-
tures) and rotation angle magnitude (for mental rotation) for the two categories tasks. The average
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Table 7. Summary Assessment of the Suitability of Modalities

Modality

Suitability fMRI fNIRS Eye tracking
Research conclusion

Investigating patterns of brain activity � � �
Analyzing the visual attention trends � � �
Analyzing the impact of task difficulty � �

Ecological validity

Providing a realistic setup and environment � � �
Being time and cost effective � � �
Ease of data analysis �� �� ��
Ease of recruitment �� �

� = Good, �� = Average, � = Poor or None.

accuracy of fNIRS participants for easy, moderate, and hard problems (92%, 93%, and 91%), was
higher than the (81%, 88%, and 84%) accuracy of fMRI participants. The difference was significant
for easy (W = 82.5, p < 0.01) and hard (W = 113.5, p = 0.05) problems. This could be a very rel-
evant concern for neuroimaging studies of productivity, expertise, accuracy, or similar software
engineering issues.

Eye trackers only measure eye movements, so they are inherently incapable of measuring brain
structure and functions. However, eye movements are associated with cognitive processes and vi-
sual effort [75, 78, 121, 137]. The association between the task difficulty and the amount of cognitive
load required to accomplish the task was manifested by both our fMRI and eye-tracking measure-
ment and analyses. fNIRS data produced no significant findings for the effect of task difficulty on
neural activity. In this article, we present a standalone, post factum eye-tracking analysis. Previous
work in neuroscience has successfully demonstrated the use of fixations as markers (onsets) for
calculating electrophysiological brain potentials (e.g., hemodynamic responses) [125, 160]. Peitek
et al. [116] also discussed the feasibility and challenges of the simultaneous fMRI and eye-tracking
analysis.

We also believe that a simultaneous eye tracking and fMRI recording and analysis (e.g., identify-
ing fixation-related fMRI activation) is a promising direction for enhancing the explanatory power
of fMRI. Eye tracking has the potential to provide insights into developers’ cognitive processes at
a very fine level of granularity (e.g., associated with particular source code features). The idea is
to use fixations as markers for calculating hemodynamic brain responses measured by fMRI. We
argue that the time of first fixation (e.g., for a graph in a stimulus) is a more valid start signal for
cognitive processes than the time the stimulus first appears on the screen. Also, the sensitivity
of a fixation-related fMRI analysis could be investigated to determine brain activity differences
between different data structures (e.g., Tree vs. List) or tasks (e.g., insertion or deletion).

6.2 Self-Reporting

In the Data Structure Study, we also conducted a qualitative analysis of survey data focusing on
the correlation between explanations provided by participant and neuroimaging data. At a high
level, we find that self-reporting often subtly contrasts with analyses from fMRI and fNIRS data.

In one question, participants were asked to compare and contrast a mental rotation task with a
BST rotation task. Of the 72 responses, 70% reported no similarity between the two tasks—which
does not align with measured observation that the same brain regions are recruited to solve both
tasks. Even if mental rotation and tree rotation feel subjectively different, changes to brain regions
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and brain region connectivity have been shown to correlate with learning rates and expertise
[97, 131].

This finding reinforces a considerable body of work on unreliable self-reporting (both in psy-
chology [96, 120] and in computer science, including fields such as security [126], human-computer
interaction [36], and software maintenance [54]). As previous studies have relied on self-reporting
to study mental processes associated with data structures [5, 6], this evidence informs future re-
search of the importance of neuroimaging (or similar techniques) when studying the cognitive
processes underlying software engineering tasks.

6.3 Implications for Reproducible Research

In this subsection, we discuss the actual costs of carrying out these types of studies in the hope
that other researchers may carry out similar studies in the future. We have made our IRB proto-
col, experimental materials, and raw, de-identified scan and survey data publicly available. This
allows other researchers to conduct alternate analyses or produce more refined models without
the expense of producing this raw data.

Recruiting. All three modalities constrain recruiting. Most directly, remote participation (such
as via Amazon’s Mechanical Turk crowdsourcing, cf. [54, Sec. 3.5]) is not feasible.

In addition, there are specific filters. For example, fMRI typically requires corrected-to-normal
vision (because of the mirror/projection setup) and is not approved for pregnant women or those
with medical implants or head tattoos, and so forth. In some cases, participants may not be able
to finish a fMRI scanning due to claustrophobia. On the other hand, fNIRS may place significant
practical restrictions on the use of participants with dark, thick hair. In practice, we found the
fNIRS restrictions to be less onerous (resulting in 0 unusable applicants compared to 4 for fMRI).

Despite this, we found recruiting to be quite straightforward. We recruited our participants with
brief advertisements in CS classes, reimbursements, and offering participants high-resolution scans
of their brains (that can be 3D-printed). For eye-tracking analysis, we discarded the gaze data of
four (out of 30) participants as they include missing data or invalid samples. The retention rate
of ( 87%) is higher than those reported in stand-alone eye-tracking studies [106, 138]. Peitek et al.
[116] investigated the feasibility of adding simultaneous eye tracking to fMRI measurement and
reported the partial data loss of 50% for eye-gaze data due to the limitation imposed by the fMRI
environment. In comparison, 59 of 71 participants’ fMRI data and all of the 40 participants’ fNIRS
data were included in the data analysis here.

Time and Cost. Experiment time and cost are significant concerns for fMRI studies. One hour
is about the maximum time that a participant can comfortably remain in the device. With pre-
and post-screening, each participant thus takes about 90 minutes, and each participant must be
separately supervised by one or two researchers. In addition, fMRI scan time is expensive—about
$500 per hour at our institution. This is a significantly higher monetary cost than the usual soft-
ware engineering human study. The data acquisition of the code review study alone represents a
participant and machine cost of $21,000 and 52.5 hours of graduate student time.

There is almost no extra effort or cost when incorporating eye tracking into an fNIRS or fMRI
study if an eye-tracking camera is already available and installed. However, the very brief time
cost for calibration and validation of the eye tracker is not consequential compared to other setup
time costs (e.g., participants completing forms, fNIRS cap fittings).

Research Questions. The nature of the BOLD signal measured by fMRI and fNIRS influences
experiment design. Notably, tasks in which participants are performing the same activities at the
same time intervals are favored. Similarly, the contrasting, subtractive nature of these analysis
forces certain experimental controls. Informally, these modalities cannot illuminate X directly: re-
searcher must formulate tasks Y and Z such that X is the difference between them. In addition,

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 30. Pub. date: March 2021.



Toward an Objective Measure of Developers’ Cognitive Activities 30:25

the limited range of participant actions available restricts the range of tasks: for example, with-
out a keyboard, no new coding is possible. In general, however, we found research question de-
sign to be fairly direct given consultations with psychology researchers who had medical imaging
experience.

IRB. An Institutional Review Board or Ethics Board governs acceptable human study research
at a university. While eye-tracking studies are usually “exempted” (a lightweight variant of “ap-
proved”), IRBs often distinguish between medical research and other (e.g., social or behavioral)
research. fMRI and fNIRS studies fall into the heavily regulated medical category. The medical IRB
paperwork necessary for our studies involved 236 questions in the cover sheet alone, and the main
protocol was 33 pages (compared to 13 for non-medical protocols). In addition, since brain scans
are HIPAA protected data, a four-page data protection and privacy plan was required.

Ecological Validity. One of the more challenging aspects of experimental design was balancing
ecological validity (i.e., are the activities undertaken by the participants indicative of the real world)
with the constraints of neuroimaging and eye tracking.

Eye tracking and fNIRS both stand out for their portability, admitting experiments in more realis-
tic environments. The development of new eye-tracking tools like iTrace [135] to support scrolling
in, and switching between, files paves the way for performing experiments on larger software ar-
tifacts, including source code [2, 80], bug reports, and requirements documents. A few previous
efforts successfully combined eye tracking and fNIRS to study software engineering tasks [47, 48].

The small sizes of tasks with highly controlled stimuli and the artificial setting are two main
factors compromising the ecological validity of fMRI studies [82, 162]. Tasks are designed to isolate
one specific skill and must be repeated many times to account for neuroimaging signals’ noisy
nature. This repetition increases session length. The scan duration and data analysis prevent multi-
minute tasks. Also, the sterile, medical environment of medical imaging labs in which participants
lie in a narrow magnetic tube (for fMRI) can be intimating and far from naturalistic. The standard
MRI-safe button press device precludes scrolling, requiring all stimuli to fit on one screen. While
fMRI has the best penetration power, all these issues make the setting and tasks an imperfect fit
with software developers’ real-life working conditions. These limitations introduce challenges in
translating the insights generated in the lab experiments to real-life brain function [82].

Implication Summary. If past history is to be our guide, we believe that many of these lim-
itations will lessen or disappear as newer technologies are invented in the years to come [100].
Recently, Krueger et al. [85] successfully performed the first code writing fMRI study. They em-
ployed a bespoke keyboard while moving all metal and control logic to a separate room to use the
keyboard inside the bore safely.

Portable devices such as eye trackers and fNIRS are moving research to more naturalistic set-
tings. An eye tracker provides additional insights into participants’ cognitive processes and the
intentions that motivate their actions. Compared to fMRI and fNIRS, eye tracking provides a cost-
effective, less intrusive solution to objectively measure software engineering tasks without con-
scious filtering. However, eye trackers come with intrinsic limitations [59, 121, 137], including the
inaccuracy between actual and measured gaze data, the gradual decrease of accuracy (drift) over
time, and not capturing the extrafoveal vision that accounts for up to 98% of the human visual
field.

While we acknowledge these limitations and the extra cost and effort required to gather data
compared to traditional methods (e.g., screen and audio recordings and surveys), we believe that
eye tracking provides a cost-effective way of objectively assess participants’ cognitive load. It can
be used to perform preliminary studies prior to a neuroimaging study to evaluate the hypotheses,
research questions, and materials.
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Overall, while costly fMRI studies of software engineering remain limited, we expect the avail-
ability of hand-held fNIRS scanners, off-the-shelf eye-tracking cameras, and open-source data anal-
ysis tools for both eye tracking and fNIRS data to result in the growth of studies that those modal-
ities in more natural (e.g., sitting down at a standard computer) settings.

7 THREATS TO VALIDITY

One threat to validity associated with generalizability is that our stimuli may not be indicative.
For example, all code stimuli were in C and all prose stimuli were in English. Also, due to the
inherent limitations of fMRI and fNIRS (see Section 2.1.1), we explicitly used static stimuli that
took no longer than 30 seconds to finish. Thus, by focusing only on relatively short source code
and data structure tasks in which participants were not able to interact with the computer (no
scrolling, no code navigation, etc.), our results may not generalize to real-world software engi-
neering tasks. This emphasis on tasks that are much shorter than many of those performed by
practicing software developers is a significant limitation of the current use of neuroimaging in
software engineering [24, 41, 48, 51, 74, 104, 116, 142, 143]. We mitigate this threat slightly by
choosing stimuli from the representative resources. While our examples are not multi-language,
we approach generality by choosing code changes at random from real-world projects and using
established standardized test questions. We select data structure tasks from college-level courses
which commonly focus on associated fundamental skills.

Our use of GPA as a proxy for expertise introduces an additional threat. Measuring participant
expertise is difficult, and the metrics used are often domain-specific. For example, in specification
mining the number of edits to version control repositories has been used as a proxy for exper-
tise [88], while research related to Community Question Answering sites may be used as a proxy
of expertise based on counting or profiling [170]. GPA correlates with learning and academic ap-
titude (e.g., [61, 147]).

One potential threat to internal validity concerns whether or not our tasks measure what they
claim to be measuring (i.e., “data structure manipulation,” “code comprehension,” or “code re-
view”). The thought processes that participants used when answering may not be identical: in-
deed, there is significant inter-participant variance in the neural representation of this problem
solving. For the code review study, we mitigate this threat by posing the types of questions known
to be asked by programmers during software evolution tasks [144] and presenting code review as
it would appear to a remote GitHub user. While the particular data structures and tasks we chose
are not representative of all of software engineering (e.g., skip lists, tries, heaps, maps, and so
forth are not considered), we mitigate this somewhat by considering fundamental structures (lin-
ear sequential structures and branching trees). For eye-tracking data, calibrating the eye tracker
for each participant and using well-documented, standard measures can mitigate the conclusion
validity threat. However, it is important not to generalize our results far beyond what was directly
measured.

Our use of mental rotation tasks as a baseline for spatial ability is one potential threat to exter-
nal validity, as mental rotation and data structure manipulations differ in their rigidity. In spatial
ability tasks, rigid transformations are those where distances between every pair of points on an
object is preserved [11]. However, operations such as insertion, tree rotation, and merging may
be more amenable to comparison with non-rigid transformations. Yet, we believe that mental ro-
tation serves as a useful baseline (see Section 2.2.3). Mental rotation is a paradigm case of spatial
ability, and has been classified on the basis of difficulty both with and without medical imaging
[27, 30, 65].

A correction of eye-tracking data by manually moving fixations to fit the stimulus is a common
procedure [112]. This manual procedure to correct drift may have introduced some biases into the
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results. We mitigate this threat by (1) assigning one of our authors to apply the same consistent
strategy, and (2) fixing the questions on top of the stimuli as a reference point and only manually
moving fixations if their locations deviate from the question line.

Another issue is related to our area of interest definitions. Due to inaccuracies in both eye track-
ers and the human visual system, fixations may fall outside the targeted object. To alleviate this
issue, we follow accepted best practices [58, 137] and add extra padding around AOIs. Another
factor that may impact the quality of the eye-tracking data is the deterioration of calibration over
time due to a participant’s fatigue or head movements. The use of video-based eye trackers reduces
this instrument bias because participants can move their heads without decalibration.

We used a long-range camera-based eye tracker, placed outside the scanner bore. Integrating
electronic devices with fMRI is an open challenge [64, 85]. Electronic or metal devices usually
cannot be safely placed near magnetic resonance scanners. Not only can metal objects distort
the MRI image, but fMRI also interferes with device measurement and reporting. Compared to eye
trackers built in to the head coil, our setup provides lower precision of eye-tracking data. However,
this design increases fMRI data quality by removing a source of noise for fMRI data.

The high dimensionality of fMRI and the complex mathematical analyses often necessitate con-
servative corrections for false positives and/or strong assumptions about the underlying data (that
may or may not be met by reality) [16]. In a highly popularized article, Eklund et al. found that
fMRI data often fail to meet the assumptions required for a certain “cluster-based” approach to
multiple comparisons correction—this method, offered by nearly all common software packages
for fMRI analysis, can therefore result in false-positive rates of up to 70% [43]. A key advantage
to our multivariate approach is that all voxels are considered simultaneously, precluding the need
for voxelwise multiple comparisons correction. However, this approach does preclude the sort of
directed regional inference of standard GLM-based tests (cf. [142]).

A final threat to external validity is the pool from which we selected participants. By only re-
cruiting undergraduate and graduate students, our results may not generalize beyond university
programming experience and education.

8 RELATED WORK

In this section, we discuss previous work related to computer science and neuroscience, as well as
studies in a wider range of domains that have used both fMRI and fNIRS. Additionally, we briefly
discuss previous research on eye-tracking studies in software engineering.

Siegmund et al. introduced the study of software engineering tasks with fMRI, focusing on code
comprehension [142]. Their analyses identified five brain regions with distinct activation patterns,
all of which are relevant to working memory, attention, and language processing. Newer work has
explored the relationship between comprehension, code, and prose review with expertise [51], bug
detection and brain activities [24, 41], code comprehension with eye tracking [116], and the effects
of beacons (semantic cues) on code comprehension [143]. Our study applies Siegmund et al.’s inno-
vative use of neuroimaging, and adopts these previously identified brain regions as an established
basis for verbal processing in software engineering. We identify relevant brain regions associated
with verbal processing; their work focused on expertise and classification. Also, unlike previous
work, we examine data structures and their correlation with spatial ability.

Similar to fMRI, fNIRS has been used to study the relationship between program comprehen-
sion and brain activity. Researchers used NIRS signals and found an increase in cerebral blood flow
when analyzing obfuscated code and code that requires variable memorization [74, 104]. Subse-
quent research studied the effect of code readability on cognitive load [48, 143]. Using over 70
participants and multiple modalities, our study supports the feasibility of using fNIRS to study
software engineering. Besides fMRI and fNIRS, researchers have tried other medical imaging tools

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 3, Article 30. Pub. date: March 2021.



30:28 Z. Sharafi et al.

to study software engineering. Crk et al. used electroencephalography (EEG) to investigate the
role of expertise in programming language comprehension. Their study found that the brain’s
electrical activity can indicate both prior programming and self-reported experience levels [29].
Lee et al. used EEG in a similar setting [90] to Floyd et al.’s work [51]. Parnin used electromyog-
raphy (EMG) to explore the roles of subvocalization for different programming [114]. Researchers
have explored the link between programming tasks and cognitive load [53, 89] using EEG, EMG,
and eye tracking.

Beyond neuroimaging, Parnin proposed a model focused on how a programmer manages task
memory, specifically during multi-tasking and interruptions [113]. Of the previous studies com-
bining neuroimaging or cognitive neuroscience with software engineering, none has investigated
the effect of data structures on brain activity or explicitly investigated the relationship between
data structures and spatial ability. In addition, no previous study has compared fMRI to fNIRS in
the domain of software engineering. Over the last 20 years, the software engineering community
has benefited from the uses of eye trackers. The results of eye-tracking studies add to the existing
body of knowledge on how developers perform different software engineering tasks and how they
use different models and representations along with source code to understand software systems.
However, eye trackers are not without shortcomings and unlike neuroimaging, they do not pro-
vide insight into the brain activities. As a result, a handful of previous studies researchers started
to use eye tracking simultaneously with EEG [53], fNIRS [48], and fMRI [116]. To the best of our
knowledge, only Peitek et al. [116] performed a conjoint study to simultaneously use eye tracking
and fMRI while providing a comprehensive analysis of the combined data.

However, care must be taken when designing fNIRS studies that involve activities in regions
more distal from the scalp. Beyond raw signal-level correlations, our work finds that the result-
ing models of the two modalities do not draw identical conclusions on low-level explorations in
software engineering (see Section 6.1), a relevant concern for future software engineering imaging
research.

9 SUMMARY AND CONCLUSION

We present a systematic approach to objectively measure and foundationally understand the cog-
nitive processes of programming activities. In particular, our two studies use fMRI, fNIRS, and eye
tracking to investigate (1) the mental relationship between code review, prose review, and code
comprehension, and (2) the neural correlation between data structure manipulations and spatial
ability. We also examine the influence of problem difficulty and programmers’ expertise levels by
objectively measuring both programmers’ brain activation and eye movements. We recruited 112
students in total to participate in these two studies.

Our first study is a controlled experiment involving 29 participants in which code comprehen-
sion, code review, and prose review tasks are contrasted against each other using fMRI. Siegmund
et al. asked whether, following Dijkstra, good programmers need good native language skills, and
explored code but not language or expertise [142]. Hindle et al. found that most software admits
the same statistical properties and modeling as natural language [69]. Our findings in some sense
bridge that gap, explicitly relating software, natural language, and expertise. All of our participants
are students, and we use GPA as a proxy for expertise. Thus, our results should be considered pre-
liminary, and may not be generalized to other settings. Our second study involved 70 participants
in which we hypothesized that data structures are related to spatial ability. Our two key insights,
with regard to the neural representation, were the use of multiple medical imaging approaches
and the use of the mental rotation paradigm to serve as a baseline for measuring spatial ability.

The contributions of this article are as follows:
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—We report on two human studies involving 112 student participants and three modalities,
the largest such studies we are aware of for software engineering. We make available our
study materials and de-identified dataset of raw participant brain scans and eye-gaze data.

—We find different patterns of neural activity between code comprehension and prose re-
view tasks: the the neural representations of programming languages and natural

languages are distinct.
—We demonstrate that the neural representations of programming languages and nat-

ural languages are modulated by expertise. Greater skill predicts less-differentiated rep-
resentation. That is, expert brains treat code and prose tasks more similarly.

—We find that data structure and spatial operations are related but distinct neural

tasks: they use the same focal regions of the brain but to different degrees.
—We demonstrate that problem difficulty matters at a neural level in computing, with

complex stimuli inducing a relatively higher cognitive load in both data structure and men-
tal rotation tasks. This claim is supported by both neural activity data and eye-movement
data.

—We observe that participants’ overall problem-solving strategies differed across tasks

through their visual attention trends. Participants used elimination strategies and ruled out
the incorrect options for tree tasks but directly solved mental rotation and list tasks.

—We present best practices and describe tradeoffs between fMRI, fNIRS, eye tracking, and
self-reporting for software engineering research. We also discuss the barriers to conducting
software engineering studies with objective measures using neuroimaging and eye tracking.

To the best of our knowledge, this is the first article that directly compares these three different
objective measurements (fMRI, fNIRS, and eye tracking) in software engineering. We thus elabo-
rate on both measurement and performance issues (Section 6.1), as well as monetary, protocol, and
recruitment issues (Section 6.3). We argue, at a high level, that neural imaging and eye tracking in
computer science have the potential to shed light on multiple unresolved problems (e.g., unreliable
self-reporting, pedagogy, retraining aging developers, technology transfer, expertise, and the rela-
tionship between software and natural language). We acknowledge that the work presented here
is still quite exploratory: a full quantitative theory of relating code, prose, and expertise remains
distant. We also acknowledge the time and material costs of such studies, and make our materials
and data available, inviting collaboration on future work.

APPENDIX

A NEUROIMAGING MATHEMATICAL ANALYSIS

In this Appendix, we present mathematical details associated with the analysis of medical imaging
data from our software engineering experiments.

A.1 Preprocessing

A critical first step in the analysis of data is preprocessing, which serves to correct systematic
sources of noise.

fMRI. We employed a number of standard preprocessing procedures using the Statistical Para-
metric Mapping 12 (SPM12, Wellcome Trust Centre for Neuroimaging, London) software in Matlab.
First, we computed voxel displacement maps (VDMs) using images from the fieldmap sequence. We
then realigned the functional scans after accounting for head motion over time; the VDMs were
used to “unwarp” geometric distortions from motion. Next, the anatomical scans were segmented,
skull-stripped, and spatially coregistered to the functional data. All images were then transformed
into a standard space according to the Montreal Neurological Institute (MNI152) template [98]. Fi-
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nally, we computed a brain mask using gray and white matter segments of the anatomical scans—
this was applied in subsequent statistical analyses to prevent identification of false-positive signals
within ventricles or outside of brain space.

fNIRS. The raw fNIRS data are light signals transmitted through the channels between emitters
and adjacent detectors on the fNIRS cap. The light signals were converted to a measure of the
optical density5 change over time that results from hemodynamic responses.

A.2 First-Level Analysis

fMRI. Functional MRI analyses are multi-level. First-level models are specified on individual par-
ticipant data—the results are then combined in a group-level model to assess average task-related
changes in brain activity. We specified two first-level general linear models (GLMs) per participant.
Briefly, these analyses require us to predict the BOLD response to each condition—voxels whose
timeseries align with the predicted response are “task-sensitive.” In each GLM, we specified re-
gressors for Sequence, Tree, and Mental stimuli across all runs. The duration of each event was
curtailed to participant response times. These were convolved with the canonical hemodynamic
response function (HRF) and high-pass filtered (σ = 128 s) to remove low-frequency noise. In one
model, we additionally specified a parametric modulator for each condition to determine whether
the magnitude of the BOLD response scaled linearly with trial difficulty. All models were fit using
robust weighted least squares (rWLS) [37], which first obtains estimates of the error variance at
each timepoint and reweights the images by a factor of 1/variance to reduce the influence of noisy
scans (e.g., due to head motion). This procedure homogenizes the residual timeseries and obtains
optimal parameter estimates for each condition.

fNIRS. Statistical analyses for fNIRS follow the same general principles as fMRI. We specified
within-subject, first-level GLMs to model fNIRS optical density measurements in all the chan-
nels that were statistically related to the timing of the hemodynamic responses (as determined by
convolving timeseries of stimulus events with the canonical HRF). In fNIRS, systemic physiology
and motion-induced artifacts are major sources of noise and false positives. We therefore fit our
models using autoregressive-whitened robust regression [13], which controls for such confounds
and affords optimal parameter estimation. Then, we applied t-tests to the regression coefficients
describing the task-related brain activations modeled for every participant. We additionally sepa-
rated tasks into three difficulty levels and constructed GLMs to analyze the effect of task difficulty
on neural activity.

A.3 Contrasts and Group-Level Analysis

fMRI. Following first-level model estimation, we computed pairwise contrasts to determine mean
differences in activity between conditions. These were estimated on a within-participant basis
(i.e., on first-level models). We applied a 5 mm3 full-width at half maximum (FWHM) Gaussian
smoothing kernel to each contrast map and carried them upward into group-level random effects

analyses. A GLM in this context allows us to assess average activity across all participants, ac-
counting for inter-individual variance to make some population-level inference. The end result is
a statistical parametric map of t-values describing clusters of significant activity for a given task-
related comparison. Importantly, all models and tests described here were done voxelwise—that is,
a GLM was specified and estimated for each of nearly 73,000 voxels in brainspace. We therefore
applied a false discovery rate (FDR) threshold at q < 0.05 to control for false positives as a result of
multiple comparisons.

5The degree to which a refractive medium retards transmitted rays of light.
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fNIRS. As with the fMRI analysis, we computed pairwise contrasts to determine mean differ-
ences in activity between conditions, estimated on a within-participant basis. Next, we conducted
a group-level analysis to summarize the first-level regression coefficients. A mixed effects model
was used to examine the average group-level response, with individual participants treated as ran-
dom effects. Finally, we applied an FDR threshold at q < 0.05 to control for false positives from
multiple comparisons.

A.4 Gaussian Process Classification

Multivariate Pattern Analyses. We used GPC to determine the extent to which code and prose
tasks elicited similar patterns of brain activity. If code and prose are processed using highly over-
lapping brain systems, classifier accuracy would be low, reflecting entangled patterns of activity.
These so-called multivariate pattern analyses were implemented in Matlab using the Gaussian Pro-
cesses for Machine Learning software, v3.5 [122]. Classification is performed in a two-step pro-
cedure: the machine is first trained to identify patterns of activity corresponding to two stimulus
types (code or prose), and learning performance is then tested using new images without class
labels.

Inputs and Feature Selection. The extremely large dimension of fMRI data is a major obsta-
cle for machine learning—we commonly have tens of thousands of voxels but only a few dozen
training examples. This can be solved using a simple linear map (a kernel function) that reduces the
dimensionality of the feature space [87, 130, 139]. To begin, training inputs (features) were given
as a set of vectors {xn }Nn=1, with corresponding binary (+1/−1) class labels, {yn }Nn=1 (where N is the
number of beta images for a given participant across both classes). Because any given beta image
is a 3D matrix of voxels, we can easily reshape it into an input vector, xn . The dimensionality of the
feature vector is equal to the number of voxels used for pattern identification: for these analyses,
we reduced the feature set to 47,187 voxels contained across 90 regions of the cerebrum, defined by
the Automated Anatomical Labeling (AAL) atlas [161]. The AAL atlas allowed us to probe whole
brain patterns across the same voxels for all participants. For additional feature reduction, we com-
puted a simple N × N linear kernel whose elements indicated the degree of similarity between all
pairs of input images.

GPC. Gaussian Processes treat the classification problem as an extension of the multivariate
Gaussian, defined by a covariance function that is used to make predictions for new data (condi-
tioned on a training set). We elected to use GPC over other common methods (e.g., the support
vector machine) for several reasons: (1) predictions are made by integrating over probability distri-
butions (vs. hard linear decisions); (2) model hyperparameters and regularization terms are learned
directly from the data (vs. costly nested cross-validation routines); and (3) maximum likelihood is
robust to potential imbalances in class size, which otherwise bias linear classifiers toward predict-
ing the more common class. GPs have also been successfully used in previous neuroimaging work
to decode distinct cognitive states (as we do here), to distinguish healthy individuals from clinical
populations, and even to predict subjective experiences of pain [26, 99, 133].

The technical minutiae of GPC analysis have been described in detail previously [86, 122]. Prior
to training, a GP is defined entirely by its mean vector, μ, and covariance function, K. The covari-
ance function is parameterized as

K =
1

l2
XXT ,

where l2 is a learned scaling parameter and XXT gives the linear kernel. The goal of GP-based ma-
chine learning is then to identify optimal covariance parameters that allow for accurate predictions
of new data. However, because binary classification is by nature non-Gaussian (all y ∈ {+1,−1}),
we adopt a function space view of GPs that models a latent distribution over functions, f (x), given
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the data, D = {X, y}. This distribution is used to estimate relationships between the training data
and make predictions for new examples.

To learn such a mapping, we employ a cumulative Gaussian (or probit) likelihood and specify
the posterior conditional over f using Bayes’ rule:

p (f |D,θ ) =
N (f |0,K)

p (D|θ )

N∏
n=1

ϕ (yn fn ),

where N (f |0,K) is a zero-mean prior, ϕ (yn fn ) is a factorization of the likelihood over training
examples, and p (D|θ ) gives the model evidence (or the marginal likelihood of the data given a
vector of hyperparameters, θ ). Training therefore involves finding the optimal form of K by scaling
model hyperparameters and maximizing the (log) model evidence.

Expectation Propagation. Class predictions for new images were made using expectation prop-

agation (EP). This was necessary because the probit likelihood and the posterior are both non-
Gaussian, making exact inference analytically intractable. EP algorithms allow us to reformulate
the posterior as a Gaussian and approximate the distribution of the latent function at a new test
point, x∗:

p (y∗ = +1|D,θ , x∗) =
∫

θ ( f∗)q( f∗ |D,θ , x∗)d f∗

= ϕ

(
μ∗√

1 + σ 2
∗

)
,

where q( f∗ |D,θ , x∗) gives the EP approximation to a Gaussian. Importantly, we still obtain a true
probabilistic inference by integrating over the latent posterior. The obtained class probability is
converted to a binary class label by inverting the logarithm:

t∗ = ep

{
t∗ > 0.50, y∗ = +1
t∗ ≤ 0.50, y∗ = −1.

The 0.50 threshold is non-arbitrary, owed to the symmetry of the cumulative Gaussian.
Testing and Training. We mitigated overfitting via careful cross validation and estimated un-

biased measures of classification performance. Together, these offered a robust means of testing
the extent to which GPC could distinguish between code and prose-related patterns of activity.
Ultimately three binary GPC models were trained and tested for each participant: Code Review
vs. Prose Review, Code Comprehension vs. Prose Review, and Code Review vs. Code Comprehen-
sion. Predictive performance was assessed using a leave-one-run-out cross-validation (LORO-CV)
procedure. For each fold of LORO-CV, the data from one scanning run were removed from the
kernel. The kernel was then centered according to the remaining training examples, the model
was fit, and class predictions were made for the left-out data. Given that all participants did not
necessarily have equal numbers of code/prose examples, average performance across all CV folds
was estimated as the balanced accuracy (BAC), or the arithmetic mean of the two class accuracies.

Regional Inference. We next sought to determine which regions of the brain were most in-
volved in discriminating between code and prose. This involved projecting kernel weights back
onto the 3D brain—for display purposes, we present weight maps that were averaged across CV
folds and participants. It is worth emphasizing, however, that such multivariate maps do not lend
themselves to simple regional inference: because the final classification decision depends on infor-
mation across all voxels, it is incorrect to assume voxels with high weight are the “most important.”
Nevertheless, we may estimate a posteriori the total contribution of each anatomical area in the
aforementioned AAL atlas [161].
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In this procedure, the absolute values of all voxel weights within a brain region were summed
and divided by the total number of voxels in the region. Then, each region’s “contribution strength”
was divided by the sum of strengths for all regions, yielding a proportion that is directly inter-
pretable as regional importance—a larger value indicates more total weight represented within a
region [132]. These importance maps are also presented as a group average.
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